User:Rafael Romero Becerra/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 24: Line 24:
<scene name='77/774675/Beta_better/1'>beta better</scene>
<scene name='77/774675/Beta_better/1'>beta better</scene>
 +
 +
Yamamoto et al., described a two-step model wherein the Pro-Cat domain of PCSK9 initiates contact with EGF-A of the LDL receptor at neutral pH. An antiparallel β-sheet is formed between residues 377– 379 of PCSK9 and residues 308–310 of EGF-A. The complex PCSK9:LDLR is internalized and exposure to the low pH environment of the endosome, where the CT domain of PCSK9 binds the Ligand-Binding domain of LDLR. This interaction impair the ability of the receptor to adopt a recycling-competent conformation and promote trafficking of the PCSK9-LDLR complex to the lysosome (Yamamoto, Lu et al. 2011).
 +
 +
In the absence of PCSK9, lipoprotein binding to the LDLR leads to receptor-mediated endocytosis. The low pH environment of the endosome induces a conformational change in the LDLR, resulting in discharge of bound lipoprotein ligand and interaction between the β-propeller segment and ligand-binding repeats 4 and 5. This event permits the segregation and separate trafficking of the LDLR to the cell surface and the lipoprotein ligand to the lysosome, respectively (Yamamoto, Lu et al. 2011).
 +
 +
It is believed that the transition from neutral pH at the cell surface to low pH in the endosomal compartment activates a “histidine switch” that promotes the mentioned intramolecular interaction between receptor domains. A critical aspect of this conformational change is that it promotes ligand release, thereby facilitating receptor recycling to the cell surface, where it is available for another round of endocytosis. PCSK9-mediated interference with this process causes the LDLR to traffic to lysosomes, where it is degraded (Yamamoto, Lu et al. 2011).
 +

Revision as of 10:50, 1 December 2017

PCSK9: Pro-protein convertase subtilisin/kexin type 9

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):928-33. Epub 2003 Jan 27. PMID:12552133 doi:http://dx.doi.org/10.1073/pnas.0335507100
  2. Abifadel M, Rabes JP, Devillers M, Munnich A, Erlich D, Junien C, Varret M, Boileau C. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009 Apr;30(4):520-9. doi: 10.1002/humu.20882. PMID:19191301 doi:http://dx.doi.org/10.1002/humu.20882
  3. Hess CN, Low Wang CC, Hiatt WR. PCSK9 Inhibitors: Mechanisms of Action, Metabolic Effects, and Clinical Outcomes. Annu Rev Med. 2017 Nov 2. doi: 10.1146/annurev-med-042716-091351. PMID:29095667 doi:http://dx.doi.org/10.1146/annurev-med-042716-091351
  4. Piper DE, Jackson S, Liu Q, Romanow WG, Shetterly S, Thibault ST, Shan B, Walker NP. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure. 2007 May;15(5):545-52. PMID:17502100 doi:http://dx.doi.org/10.1016/j.str.2007.04.004
  5. doi: https://dx.doi.org/10.1016/j.abb.2003.09.011
  6. Abifadel M, Rabes JP, Devillers M, Munnich A, Erlich D, Junien C, Varret M, Boileau C. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum Mutat. 2009 Apr;30(4):520-9. doi: 10.1002/humu.20882. PMID:19191301 doi:http://dx.doi.org/10.1002/humu.20882
  7. Hess CN, Low Wang CC, Hiatt WR. PCSK9 Inhibitors: Mechanisms of Action, Metabolic Effects, and Clinical Outcomes. Annu Rev Med. 2017 Nov 2. doi: 10.1146/annurev-med-042716-091351. PMID:29095667 doi:http://dx.doi.org/10.1146/annurev-med-042716-091351
  8. Benjannet S, Rhainds D, Hamelin J, Nassoury N, Seidah NG. The proprotein convertase (PC) PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J Biol Chem. 2006 Oct 13;281(41):30561-72. Epub 2006 Aug 15. PMID:16912035 doi:http://dx.doi.org/10.1074/jbc.M606495200
  9. Dewpura T, Raymond A, Hamelin J, Seidah NG, Mbikay M, Chretien M, Mayne J. PCSK9 is phosphorylated by a Golgi casein kinase-like kinase ex vivo and circulates as a phosphoprotein in humans. FEBS J. 2008 Jul;275(13):3480-93. doi: 10.1111/j.1742-4658.2008.06495.x. Epub, 2008 May 22. PMID:18498363 doi:http://dx.doi.org/10.1111/j.1742-4658.2008.06495.x
  10. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  11. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644

Proteopedia Page Contributors and Editors (what is this?)

Rafael Romero Becerra

Personal tools