5w32
From Proteopedia
(Difference between revisions)
m (Protected "5w32" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Crystal structure of mutant CJ YCEI protein (CJ-N48C) with selenocysteine guest structure== | |
+ | <StructureSection load='5w32' size='340' side='right' caption='[[5w32]], [[Resolution|resolution]] 2.60Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5w32]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5W32 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5W32 FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEC:SELENOCYSTEINE'>SEC</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=UNL:UNKNOWN+LIGAND'>UNL</scene></td></tr> | ||
+ | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5w17|5w17]], [[5w2x|5w2x]]</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5w32 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5w32 OCA], [http://pdbe.org/5w32 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5w32 RCSB], [http://www.ebi.ac.uk/pdbsum/5w32 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5w32 ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Protein crystals are porous self-assembling materials that can be rapidly evolved by mutagenesis. We aimed to develop scaffold assisted crystallography techniques in an engineered protein crystal with large pores (>13 nm). Guest molecules were installed via a single covalent bond to attempt to reduce the conformational freedom and achieve high-occupancy structures. We used four different conjugation strategies to attach guest molecules to three different cysteine sites within pre-existing protein crystals. In all but one case, the presence of the adduct was obvious in the electron density. Structure determination of larger guest molecules may be feasible due to the large pores of the engineered scaffold crystals. | ||
- | + | Installing Guest Molecules at Specific Sites within Scaffold Protein Crystals.,Huber TR, McPherson EC, Keating CE, Snow CD Bioconjug Chem. 2017 Dec 20. doi: 10.1021/acs.bioconjchem.7b00668. PMID:29232505<ref>PMID:29232505</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | [[Category: Huber, T | + | <div class="pdbe-citations 5w32" style="background-color:#fffaf0;"></div> |
- | [[Category: Snow, C | + | == References == |
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Huber, T R]] | ||
+ | [[Category: Snow, C D]] | ||
+ | [[Category: Nanotechnology nanoporous]] | ||
+ | [[Category: Unknown function]] |
Revision as of 05:46, 3 January 2018
Crystal structure of mutant CJ YCEI protein (CJ-N48C) with selenocysteine guest structure
|