6ezn
From Proteopedia
(Difference between revisions)
m (Protected "6ezn" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Cryo-EM structure of the yeast oligosaccharyltransferase (OST) complex== | |
+ | <StructureSection load='6ezn' size='340' side='right' caption='[[6ezn]], [[Resolution|resolution]] 3.30Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[6ezn]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_(strain_atcc_204508_/_s288c) Saccharomyces cerevisiae (strain atcc 204508 / s288c)]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6EZN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6EZN FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=CPL:1-PALMITOYL-2-LINOLEOYL-SN-GLYCERO-3-PHOSPHOCHOLINE'>CPL</scene>, <scene name='pdbligand=MAN:ALPHA-D-MANNOSE'>MAN</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=PTY:PHOSPHATIDYLETHANOLAMINE'>PTY</scene></td></tr> | ||
+ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Dolichyl-diphosphooligosaccharide--protein_glycotransferase Dolichyl-diphosphooligosaccharide--protein glycotransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.99.18 2.4.99.18] </span></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ezn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ezn OCA], [http://pdbe.org/6ezn PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ezn RCSB], [http://www.ebi.ac.uk/pdbsum/6ezn PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ezn ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/STT3_YEAST STT3_YEAST]] Catalytic subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity.<ref>PMID:12359722</ref> [[http://www.uniprot.org/uniprot/OST3_YEAST OST3_YEAST]] Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. [[http://www.uniprot.org/uniprot/OSTB_YEAST OSTB_YEAST]] Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. [[http://www.uniprot.org/uniprot/OST2_YEAST OST2_YEAST]] Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. [[http://www.uniprot.org/uniprot/OSTD_YEAST OSTD_YEAST]] Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. [[http://www.uniprot.org/uniprot/OST1_YEAST OST1_YEAST]] Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. [[http://www.uniprot.org/uniprot/OST4_YEAST OST4_YEAST]] Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. OST4 is required for recruitment of OST3 or OST6 to the OST complex. It is essential for cell growth at 37 but not at 25 degrees Celsius. [[http://www.uniprot.org/uniprot/OST5_YEAST OST5_YEAST]] Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Oligosaccharyltransferase (OST) is an essential membrane protein complex in the Endoplasmic Reticulum, where it transfers an oligosaccharide from a dolichol-pyrophosphate-activated donor to glycosylation sites of secretory proteins. We here describe the atomic structure of yeast OST determined by cryo-EM, revealing a conserved subunit arrangement. The active site of the catalytic STT3 subunit points away from the center of the complex, allowing unhindered access to substrates. The dolichol-pyrophosphate moiety binds to a lipid-exposed groove of STT3, while two non-catalytic subunits and an ordered N-glycan form a membrane-proximal pocket for the oligosaccharide. The acceptor polypeptide site faces an oxidoreductase domain in standalone OST complexes or is immediately adjacent to the translocon, suggesting how eukaryotic OSTs efficiently glycosylate a large number of polypeptides prior to their folding. | ||
- | + | Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation.,Wild R, Kowal J, Eyring J, Ngwa EM, Aebi M, Locher KP Science. 2018 Jan 4. pii: science.aar5140. doi: 10.1126/science.aar5140. PMID:29301962<ref>PMID:29301962</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 6ezn" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Dolichyl-diphosphooligosaccharide--protein glycotransferase]] | ||
+ | [[Category: Aebi, M]] | ||
+ | [[Category: Eyring, J]] | ||
+ | [[Category: Kowal, J]] | ||
+ | [[Category: Locher, K P]] | ||
+ | [[Category: Ngwa, E M]] | ||
+ | [[Category: Wild, R]] | ||
+ | [[Category: Membrane protein]] | ||
+ | [[Category: N-linked glycosylation]] | ||
+ | [[Category: Oligosaccharyltransferase]] | ||
+ | [[Category: Ost complex]] | ||
+ | [[Category: Yeast]] |
Revision as of 07:06, 17 January 2018
Cryo-EM structure of the yeast oligosaccharyltransferase (OST) complex
|