2dex
From Proteopedia
Line 4: | Line 4: | ||
|PDB= 2dex |SIZE=350|CAPTION= <scene name='initialview01'>2dex</scene>, resolution 2.10Å | |PDB= 2dex |SIZE=350|CAPTION= <scene name='initialview01'>2dex</scene>, resolution 2.10Å | ||
|SITE= | |SITE= | ||
- | |LIGAND= <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene> | + | |LIGAND= <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene> |
- | |ACTIVITY= [http://en.wikipedia.org/wiki/Protein-arginine_deiminase Protein-arginine deiminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.3.15 3.5.3.15] | + | |ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Protein-arginine_deiminase Protein-arginine deiminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.3.15 3.5.3.15] </span> |
|GENE= PADI4, PADI5, PDI5 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | |GENE= PADI4, PADI5, PDI5 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | ||
+ | |DOMAIN= | ||
+ | |RELATEDENTRY=[[2dew|2DEW]], [[2dey|2DEY]] | ||
+ | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2dex FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2dex OCA], [http://www.ebi.ac.uk/pdbsum/2dex PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2dex RCSB]</span> | ||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
Histone arginine methylation is a posttranslational modification linked to the regulation of gene transcription. Unlike other posttranslational modifications, methylation has generally been regarded as stable, and enzymes that demethylate histone arginine residues have not been identified. However, it has recently been shown that human peptidylarginine deiminase 4 (PAD4), a Ca(2+)-dependent enzyme previously known to convert arginine residues to citrulline in histones, can also convert monomethylated arginine residues to citrulline both in vivo and in vitro. Citrullination of histone arginine residues by the enzyme antagonizes methylation by histone arginine methyltransferases and is thus a novel posttranslational modification that regulates the level of histone arginine methylation and gene activity. Here we present the crystal structures of a Ca(2+)-bound PAD4 mutant in complex with three histone N-terminal peptides, each consisting of 10 amino acid residues that include one target arginine residue for the enzyme (H3/Arg-8, H3/Arg-17, and H4/Arg-3). To each histone N-terminal peptide, the enzyme induces a beta-turn-like bent conformation composed of five successive residues at the molecular surface near the active site cleft. The remaining five residues are highly disordered. The enzyme recognizes each peptide through backbone atoms of the peptide with a possible consensus recognition motif. The sequence specificity of the peptide recognized by this enzyme is thought to be fairly broad. These observations provide structural insights into target protein recognition by histone modification enzymes and illustrate how PAD4 can target multiple arginine sites in the histone N-terminal tails. | Histone arginine methylation is a posttranslational modification linked to the regulation of gene transcription. Unlike other posttranslational modifications, methylation has generally been regarded as stable, and enzymes that demethylate histone arginine residues have not been identified. However, it has recently been shown that human peptidylarginine deiminase 4 (PAD4), a Ca(2+)-dependent enzyme previously known to convert arginine residues to citrulline in histones, can also convert monomethylated arginine residues to citrulline both in vivo and in vitro. Citrullination of histone arginine residues by the enzyme antagonizes methylation by histone arginine methyltransferases and is thus a novel posttranslational modification that regulates the level of histone arginine methylation and gene activity. Here we present the crystal structures of a Ca(2+)-bound PAD4 mutant in complex with three histone N-terminal peptides, each consisting of 10 amino acid residues that include one target arginine residue for the enzyme (H3/Arg-8, H3/Arg-17, and H4/Arg-3). To each histone N-terminal peptide, the enzyme induces a beta-turn-like bent conformation composed of five successive residues at the molecular surface near the active site cleft. The remaining five residues are highly disordered. The enzyme recognizes each peptide through backbone atoms of the peptide with a possible consensus recognition motif. The sequence specificity of the peptide recognized by this enzyme is thought to be fairly broad. These observations provide structural insights into target protein recognition by histone modification enzymes and illustrate how PAD4 can target multiple arginine sites in the histone N-terminal tails. | ||
- | |||
- | ==Disease== | ||
- | Known diseases associated with this structure: Rheumatoid arthritis, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=605347 605347]] | ||
==About this Structure== | ==About this Structure== | ||
Line 32: | Line 32: | ||
[[Category: Shimizu, T.]] | [[Category: Shimizu, T.]] | ||
[[Category: Yamada, M.]] | [[Category: Yamada, M.]] | ||
- | [[Category: CA]] | ||
- | [[Category: SO4]] | ||
[[Category: histone modification enzyme]] | [[Category: histone modification enzyme]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 02:33:46 2008'' |
Revision as of 23:33, 30 March 2008
| |||||||
, resolution 2.10Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | , | ||||||
Gene: | PADI4, PADI5, PDI5 (Homo sapiens) | ||||||
Activity: | Protein-arginine deiminase, with EC number 3.5.3.15 | ||||||
Related: | 2DEW, 2DEY
| ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
Crystal structure of human peptidylarginine deiminase 4 in complex with histone H3 N-terminal peptide including Arg17
Overview
Histone arginine methylation is a posttranslational modification linked to the regulation of gene transcription. Unlike other posttranslational modifications, methylation has generally been regarded as stable, and enzymes that demethylate histone arginine residues have not been identified. However, it has recently been shown that human peptidylarginine deiminase 4 (PAD4), a Ca(2+)-dependent enzyme previously known to convert arginine residues to citrulline in histones, can also convert monomethylated arginine residues to citrulline both in vivo and in vitro. Citrullination of histone arginine residues by the enzyme antagonizes methylation by histone arginine methyltransferases and is thus a novel posttranslational modification that regulates the level of histone arginine methylation and gene activity. Here we present the crystal structures of a Ca(2+)-bound PAD4 mutant in complex with three histone N-terminal peptides, each consisting of 10 amino acid residues that include one target arginine residue for the enzyme (H3/Arg-8, H3/Arg-17, and H4/Arg-3). To each histone N-terminal peptide, the enzyme induces a beta-turn-like bent conformation composed of five successive residues at the molecular surface near the active site cleft. The remaining five residues are highly disordered. The enzyme recognizes each peptide through backbone atoms of the peptide with a possible consensus recognition motif. The sequence specificity of the peptide recognized by this enzyme is thought to be fairly broad. These observations provide structural insights into target protein recognition by histone modification enzymes and illustrate how PAD4 can target multiple arginine sites in the histone N-terminal tails.
About this Structure
2DEX is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
Reference
Structural basis for histone N-terminal recognition by human peptidylarginine deiminase 4., Arita K, Shimizu T, Hashimoto H, Hidaka Y, Yamada M, Sato M, Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5291-6. Epub 2006 Mar 27. PMID:16567635
Page seeded by OCA on Mon Mar 31 02:33:46 2008