5xsn
From Proteopedia
(Difference between revisions)
m (Protected "5xsn" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | The | + | ==The catalytic domain of GdpP with c-di-AMP== |
+ | <StructureSection load='5xsn' size='340' side='right' caption='[[5xsn]], [[Resolution|resolution]] 2.50Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5xsn]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XSN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5XSN FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2BA:(2R,3R,3AS,5R,7AR,9R,10R,10AS,12R,14AR)-2,9-BIS(6-AMINO-9H-PURIN-9-YL)OCTAHYDRO-2H,7H-DIFURO[3,2-D 3,2-J][1,3,7,9,2,8]TETRAOXADIPHOSPHACYCLODODECINE-3,5,10,12-TETROL+5,12-DIOXIDE'>2BA</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5xsn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5xsn OCA], [http://pdbe.org/5xsn PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5xsn RCSB], [http://www.ebi.ac.uk/pdbsum/5xsn PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5xsn ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterases (PDEs) that catalyze degradation of cyclic di-adenosine monophosphate (c-di-AMP) could be subdivided into two subfamilies based on the final product [5'-phosphadenylyl-adenosine (5'-pApA) or AMP]. In a previous study, we revealed that Rv2837c, a stand-alone DHH/DHHA1 PDE, employs a 5'-pApA internal flipping mechanism to produce AMPs. However, why the membrane-bound DHH/DHHA1 PDE can only degrade c-di-AMP to 5'-pApA remains obscure. Here, we report the crystal structure of the DHH/DHHA1 domain of GdpP (GdpP-C), and structures in complex with c-di-AMP, cyclic di-guanosine monophosphate (c-di-GMP), and 5'-pApA. Structural analysis reveals that GdpP-C binds nucleotide substrates quite differently from how Rv2837c does in terms of substrate-binding position. Accordingly, the nucleotide-binding site of the DHH/DHHA1 PDEs is organized into three (C, G, and R) subsites. For GdpP-C, in the C and G sites c-di-AMP binds and degrades into 5'-pApA, and its G site determines nucleotide specificity. To further degrade into AMPs, 5'-pApA must slide into the C and R sites for flipping and hydrolysis as in Rv2837c. Subsequent mutagenesis and enzymatic studies of GdpP-C and Rv2837c uncover the complete flipping process and reveal a unified catalytic mechanism for members of both DHH/DHHA1 PDE subfamilies. | ||
- | + | Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase.,Wang F, He Q, Su K, Wei T, Xu S, Gu L Biochem J. 2018 Jan 5;475(1):191-205. doi: 10.1042/BCJ20170739. PMID:29203646<ref>PMID:29203646</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
- | [[Category: | + | <div class="pdbe-citations 5xsn" style="background-color:#fffaf0;"></div> |
- | [[Category: | + | == References == |
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Gu, L]] | ||
+ | [[Category: Wang, F]] | ||
+ | [[Category: Hydrolase]] | ||
+ | [[Category: Phosphodiesterase]] |
Revision as of 05:54, 31 January 2018
The catalytic domain of GdpP with c-di-AMP
|