5kiw
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==p97 ND1-L198W in complex with VIMP== | |
+ | <StructureSection load='5kiw' size='340' side='right' caption='[[5kiw]], [[Resolution|resolution]] 3.41Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5kiw]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5KIW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5KIW FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ANP:PHOSPHOAMINOPHOSPHONIC+ACID-ADENYLATE+ESTER'>ANP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
+ | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5kiy|5kiy]]</td></tr> | ||
+ | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Vesicle-fusing_ATPase Vesicle-fusing ATPase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.6 3.6.4.6] </span></td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5kiw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5kiw OCA], [http://pdbe.org/5kiw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5kiw RCSB], [http://www.ebi.ac.uk/pdbsum/5kiw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5kiw ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/TERA_HUMAN TERA_HUMAN]] Defects in VCP are the cause of inclusion body myopathy with early-onset Paget disease and frontotemporal dementia (IBMPFD) [MIM:[http://omim.org/entry/167320 167320]]; also known as muscular dystrophy, limb-girdle, with Paget disease of bone or pagetoid amyotrophic lateral sclerosis or pagetoid neuroskeletal syndrome or lower motor neuron degeneration with Paget-like bone disease. IBMPFD features adult-onset proximal and distal muscle weakness (clinically resembling limb girdle muscular dystrophy), early-onset Paget disease of bone in most cases and premature frontotemporal dementia.<ref>PMID:20512113</ref> <ref>PMID:15034582</ref> <ref>PMID:15732117</ref> <ref>PMID:16247064</ref> <ref>PMID:16321991</ref> Defects in VCP are the cause of amyotrophic lateral sclerosis type 14 with or without frontotemporal dementia (ALS14) [MIM:[http://omim.org/entry/613954 613954]]. ALS14 is a neurodegenerative disorder affecting upper motor neurons in the brain and lower motor neurons in the brain stem and spinal cord, resulting in fatal paralysis. Sensory abnormalities are absent. The pathologic hallmarks of the disease include pallor of the corticospinal tract due to loss of motor neurons, presence of ubiquitin-positive inclusions within surviving motor neurons, and deposition of pathologic aggregates. The etiology of amyotrophic lateral sclerosis is likely to be multifactorial, involving both genetic and environmental factors. The disease is inherited in 5-10% of the cases. Patients with ALS14 may develop frontotemporal dementia.<ref>PMID:21145000</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/TERA_HUMAN TERA_HUMAN]] Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1L, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1L-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope. Regulates E3 ubiquitin-protein ligase activity of RNF19A (By similarity). Component of the VCP/p97-AMFR/gp78 complex that participates in the final step of the sterol-mediated ubiquitination and endoplasmic reticulum-associated degradation (ERAD) of HMGCR. Also involved in DNA damage response: recruited to double-strand breaks (DSBs) sites in a RNF8- and RNF168-dependent manner and promotes the recruitment of TP53BP1 at DNA damage sites. Recruited to stalled replication forks by SPRTN: may act by mediating extraction of DNA polymerase eta (POLH) to prevent excessive translesion DNA synthesis and limit the incidence of mutations induced by DNA damage.<ref>PMID:15456787</ref> <ref>PMID:16168377</ref> <ref>PMID:22020440</ref> <ref>PMID:22120668</ref> <ref>PMID:22607976</ref> <ref>PMID:23042607</ref> <ref>PMID:23042605</ref> [[http://www.uniprot.org/uniprot/SELS_HUMAN SELS_HUMAN]] Involved in the degradation process of misfolded endoplasmic reticulum (ER) luminal proteins. Participates in the transfer of misfolded proteins from the ER to the cytosol, where they are destroyed by the proteasome in a ubiquitin-dependent manner. Probably acts by serving as a linker between DERL1, which mediates the retrotranslocation of misfolded proteins into the cytosol, and the ATPase complex VCP, which mediates the translocation and ubiquitination.<ref>PMID:15215856</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Association of the cytosolic AAA (ATPases associated with various cellular activities) protein p97 to membranes is essential for various cellular processes including endoplasmic reticulum (ER)-associated degradation. The p97 consists of two ATPase domains and an N domain that interacts with numerous cofactors. The N domain of p97 is known to undergo a large nucleotide-dependent conformation switch, but its physiological relevance is unclear. Here we show p97 is recruited to canine ER membranes predominantly by interacting with VCP-interacting membrane protein (VIMP), an ER-resident protein. We found that the recruitment is modulated through a nucleotide-dependent conformation switch of the N domain in wild-type p97, but this modulation is absent in pathogenic mutants. We demonstrate the molecular mechanism of the modulation by a series of structures of p97, VIMP and their complexes and suggest a physiological role of the nucleotide-dependent N domain conformation switch. The lack of modulation in pathogenic mutants is caused by changes in interactions between the N and D1 domain, as demonstrated by multiple intermediate positions adopted by N domains of mutant p97. Our findings suggest the nucleotide-modulated membrane association may also have a role in other p97-dependent processes. | ||
- | + | Structural basis for nucleotide-modulated p97 association with the ER membrane.,Tang WK, Zhang T, Ye Y, Xia D Cell Discov. 2017 Dec 12;3:17045. doi: 10.1038/celldisc.2017.45. eCollection, 2017. PMID:29238611<ref>PMID:29238611</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 5kiw" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Vesicle-fusing ATPase]] | ||
+ | [[Category: Tang, W K]] | ||
+ | [[Category: Xia, D]] | ||
+ | [[Category: Hydrolase-membrane protein complex]] | ||
+ | [[Category: P97]] | ||
+ | [[Category: P97 adaptor protein]] | ||
+ | [[Category: Vcp-interacting membrane protein]] | ||
+ | [[Category: Vimp]] |
Revision as of 04:57, 8 March 2018
p97 ND1-L198W in complex with VIMP
|