Major vault protein

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 19: Line 19:
== Structural highlights ==
== Structural highlights ==
MVP is highly conserved in evolution and can create the entire outer shell of the vault barrel structure, which is comprised of two identical halves. The outer shell is a closed, smooth surface without any large gaps or windows. When considering the individual MVP within a vault particle, their <scene name='78/783129/N-terminus/1'>N-terminus ( residues 113–620)</scene> forms the waist of the particle while their <scene name='78/783129/C-terminus/2'>C-terminus (residues 621-893)</scene> builds the cap and the cap/barrel junction[26]. This leads to the current belief that the N-terminus accounts for the non-covalent interactions between the identical particle halves[9]. In addition, each MVP represents a unique structure that does not share a homology with other proteins, yet exhibits a high degree of conservation [8,9,20,22,23]- around 90% within mammals [14,16].
MVP is highly conserved in evolution and can create the entire outer shell of the vault barrel structure, which is comprised of two identical halves. The outer shell is a closed, smooth surface without any large gaps or windows. When considering the individual MVP within a vault particle, their <scene name='78/783129/N-terminus/1'>N-terminus ( residues 113–620)</scene> forms the waist of the particle while their <scene name='78/783129/C-terminus/2'>C-terminus (residues 621-893)</scene> builds the cap and the cap/barrel junction[26]. This leads to the current belief that the N-terminus accounts for the non-covalent interactions between the identical particle halves[9]. In addition, each MVP represents a unique structure that does not share a homology with other proteins, yet exhibits a high degree of conservation [8,9,20,22,23]- around 90% within mammals [14,16].
-
There are several domains within MVP, among the most important is the highly conserved<scene name='78/783129/C-terminus/2'> α- helical domain</scene> near the C-terminus that functions as a coiled coil which mediates an interaction between different MVPs and subsequently vault formation. The N-terminal of MVP was reported to bind Ca2+ [+PDB], but while it has been speculated that MVP contains at least 2 Ca2+-binding EF hands in<scene name='78/783129/Ef-hand_location/1'> positions 131–143</scene>[28], substructure determinations by NMR could not confirm these EF hands and thus an alternative Ca2+ mechanism was suggested which included coordination by large number of <scene name='78/783129/Beta_loops/1'>acidic residues in the long β1/β2 and β2/β3 loops</scene> of multiple MVP domains [10 find PBD], in a way similar to that which is found in integrins(figure x).
+
There are several domains within MVP, among the most important is the highly conserved<scene name='78/783129/C-terminus/2'> α- helical domain</scene> near the C-terminus that functions as a coiled coil which mediates an interaction between different MVPs and subsequently vault formation. The N-terminal of MVP was reported to bind Ca2+ [+PDB], but while it has been speculated that MVP contains at least 2 Ca2+-binding EF hands in<scene name='78/783129/Ef-hand_location/1'> positions 131–143</scene>[28], substructure determinations by NMR could not confirm these EF hands and thus an alternative Ca2+ mechanism was suggested which included coordination by large number of <scene name='78/783129/Beta_loops/1'>acidic residues in the long β1/β2 and β2/β3 loops</scene> of multiple MVP domains [10 find PBD], in a way similar to that found in[[ integrins]](figure x).
==The MVP gene, transcription, translation and post translation modifications==
==The MVP gene, transcription, translation and post translation modifications==

Revision as of 15:56, 16 March 2018

The Major Vault Protein

The outer shell of the Vault particle

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644

Proteopedia Page Contributors and Editors (what is this?)

Idan Ben-Nachum, Michal Harel

Personal tools