User:Christian Fjeld/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
=== Catalytic Domain ===
=== Catalytic Domain ===
 +
The catalytic domain is responsible for the two step process of charging leucine on to tRNA<sup>leu</sup>. First, ATP and leucine are bound and AMP is transfered to the backbone carboxylic acid of leucine with the release of a pyrophosphate. Second, tRNA<sup>leu</sup> is bound with the leucyl adenylate and leucine is transfered to either the 2' or 3' OH of the 3' terminal adenine with the release of AMP. This process requires
<ref>doi: 10.1093/emboj/19.10.2351</ref>
<ref>doi: 10.1093/emboj/19.10.2351</ref>
<ref>doi: 10.1038/nsmb.2317</ref>
<ref>doi: 10.1038/nsmb.2317</ref>
-
<ref>doi: 10.1016/j.jmb.2009.04.073</ref>
+
 
=== Editing Domain ===
=== Editing Domain ===
 +
The editing domain of LARS is responsible for editing mischarged tRNA and ensuring translational fidelity.
 +
<ref>doi: 10.1016/j.jmb.2009.04.073</ref>
 +
<ref>DOI: 10.1042/BJ20051249</ref>
=== Anticodon Binding Domain ===
=== Anticodon Binding Domain ===
 +
The anticodon binding domain is essential for the fidelity of ARSs. However, there are numerous anticodons that correspond to leucine including AAU, GUA, and GUG
 +
== Disease ==
== Disease ==

Revision as of 15:40, 1 May 2018

General Description

LARS (E coli) ternary complex with tRNAleu and leucyl adenylate analogue

Drag the structure with the mouse to rotate

3D Structure of LARS

Updated on 01-May-2018

References

  1. Mirande M. The Aminoacyl-tRNA Synthetase Complex. Subcell Biochem. 2017;83:505-522. doi: 10.1007/978-3-319-46503-6_18. PMID:28271488 doi:http://dx.doi.org/10.1007/978-3-319-46503-6_18
  2. Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, Kim HK, Ha SH, Ryu SH, Kim S. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell. 2012 Apr 13;149(2):410-24. doi: 10.1016/j.cell.2012.02.044. Epub 2012 Mar, 15. PMID:22424946 doi:http://dx.doi.org/10.1016/j.cell.2012.02.044
  3. Pierce SB, Gersak K, Michaelson-Cohen R, Walsh T, Lee MK, Malach D, Klevit RE, King MC, Levy-Lahad E. Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am J Hum Genet. 2013 Apr 4;92(4):614-20. doi: 10.1016/j.ajhg.2013.03.007. Epub, 2013 Mar 28. PMID:23541342 doi:http://dx.doi.org/10.1016/j.ajhg.2013.03.007
  4. Cusack S, Yaremchuk A, Tukalo M. The 2 A crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 2000 May 15;19(10):2351-61. PMID:10811626 doi:10.1093/emboj/19.10.2351
  5. Palencia A, Crepin T, Vu MT, Lincecum TL Jr, Martinis SA, Cusack S. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nat Struct Mol Biol. 2012 Jun 10. doi: 10.1038/nsmb.2317. PMID:22683997 doi:10.1038/nsmb.2317
  6. Seiradake E, Mao W, Hernandez V, Baker SJ, Plattner JJ, Alley MR, Cusack S. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles. J Mol Biol. 2009 Jul 10;390(2):196-207. Epub 2009 May 6. PMID:19426743 doi:10.1016/j.jmb.2009.04.073
  7. Liu Y, Liao J, Zhu B, Wang ED, Ding J. Crystal structures of the editing domain of Escherichia coli leucyl-tRNA synthetase and its complexes with Met and Ile reveal a lock-and-key mechanism for amino acid discrimination. Biochem J. 2006 Mar 1;394(Pt 2):399-407. PMID:16277600 doi:10.1042/BJ20051249

Proteopedia Page Contributors and Editors (what is this?)

Christian Fjeld

Personal tools