We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

2hr0

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
|ACTIVITY=
|ACTIVITY=
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2hr0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hr0 OCA], [http://www.ebi.ac.uk/pdbsum/2hr0 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=2hr0 RCSB]</span>
}}
}}
Line 14: Line 17:
==Overview==
==Overview==
The human complement system is an important component of innate immunity. Complement-derived products mediate functions contributing to pathogen killing and elimination. However, inappropriate activation of the system contributes to the pathogenesis of immunological and inflammatory diseases. Complement component 3 (C3) occupies a central position because of the manifold biological activities of its activation fragments, including the major fragment, C3b, which anchors the assembly of convertases effecting C3 and C5 activation. C3 is converted to C3b by proteolysis of its anaphylatoxin domain, by either of two C3 convertases. This activates a stable thioester bond, leading to the covalent attachment of C3b to cell-surface or protein-surface hydroxyl groups through transesterification. The cleavage and activation of C3 exposes binding sites for factors B, H and I, properdin, decay accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46), complement receptor 1 (CR1, CD35) and viral molecules such as vaccinia virus complement-control protein. C3b associates with these molecules in different configurations and forms complexes mediating the activation, amplification and regulation of the complement response. Structures of C3 and C3c, a fragment derived from the proteolysis of C3b, have revealed a domain configuration, including six macroglobulin domains (MG1-MG6; nomenclature follows ref. 5) arranged in a ring, termed the beta-ring. However, because neither C3 nor C3c is active in complement activation and regulation, questions about function can be answered only through direct observations on C3b. Here we present a structure of C3b that reveals a marked loss of secondary structure in the CUB (for 'complement C1r/C1s, Uegf, Bmp1') domain, which together with the resulting translocation of the thioester domain provides a molecular basis for conformational changes accompanying the conversion of C3 to C3b. The total conformational changes make many proposed ligand-binding sites more accessible and create a cavity that shields target peptide bonds from access by factor I. A covalently bound N-acetyl-l-threonine residue demonstrates the geometry of C3b attachment to surface hydroxyl groups.
The human complement system is an important component of innate immunity. Complement-derived products mediate functions contributing to pathogen killing and elimination. However, inappropriate activation of the system contributes to the pathogenesis of immunological and inflammatory diseases. Complement component 3 (C3) occupies a central position because of the manifold biological activities of its activation fragments, including the major fragment, C3b, which anchors the assembly of convertases effecting C3 and C5 activation. C3 is converted to C3b by proteolysis of its anaphylatoxin domain, by either of two C3 convertases. This activates a stable thioester bond, leading to the covalent attachment of C3b to cell-surface or protein-surface hydroxyl groups through transesterification. The cleavage and activation of C3 exposes binding sites for factors B, H and I, properdin, decay accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46), complement receptor 1 (CR1, CD35) and viral molecules such as vaccinia virus complement-control protein. C3b associates with these molecules in different configurations and forms complexes mediating the activation, amplification and regulation of the complement response. Structures of C3 and C3c, a fragment derived from the proteolysis of C3b, have revealed a domain configuration, including six macroglobulin domains (MG1-MG6; nomenclature follows ref. 5) arranged in a ring, termed the beta-ring. However, because neither C3 nor C3c is active in complement activation and regulation, questions about function can be answered only through direct observations on C3b. Here we present a structure of C3b that reveals a marked loss of secondary structure in the CUB (for 'complement C1r/C1s, Uegf, Bmp1') domain, which together with the resulting translocation of the thioester domain provides a molecular basis for conformational changes accompanying the conversion of C3 to C3b. The total conformational changes make many proposed ligand-binding sites more accessible and create a cavity that shields target peptide bonds from access by factor I. A covalently bound N-acetyl-l-threonine residue demonstrates the geometry of C3b attachment to surface hydroxyl groups.
- 
-
==Disease==
 
-
Known diseases associated with this structure: C3 deficiency OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=120700 120700]], Macular degeneration, age-related, 9 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=120700 120700]]
 
==About this Structure==
==About this Structure==
Line 31: Line 31:
[[Category: Narayana, S V.]]
[[Category: Narayana, S V.]]
[[Category: Volanakis, J E.]]
[[Category: Volanakis, J E.]]
-
[[Category: THC]]
 
[[Category: complement component c3b]]
[[Category: complement component c3b]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 17:20:27 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 03:34:10 2008''

Revision as of 00:34, 31 March 2008


PDB ID 2hr0

Drag the structure with the mouse to rotate
, resolution 2.260Å
Ligands:
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



Structure of Complement C3b: Insights into Complement Activation and Regulation


Overview

The human complement system is an important component of innate immunity. Complement-derived products mediate functions contributing to pathogen killing and elimination. However, inappropriate activation of the system contributes to the pathogenesis of immunological and inflammatory diseases. Complement component 3 (C3) occupies a central position because of the manifold biological activities of its activation fragments, including the major fragment, C3b, which anchors the assembly of convertases effecting C3 and C5 activation. C3 is converted to C3b by proteolysis of its anaphylatoxin domain, by either of two C3 convertases. This activates a stable thioester bond, leading to the covalent attachment of C3b to cell-surface or protein-surface hydroxyl groups through transesterification. The cleavage and activation of C3 exposes binding sites for factors B, H and I, properdin, decay accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46), complement receptor 1 (CR1, CD35) and viral molecules such as vaccinia virus complement-control protein. C3b associates with these molecules in different configurations and forms complexes mediating the activation, amplification and regulation of the complement response. Structures of C3 and C3c, a fragment derived from the proteolysis of C3b, have revealed a domain configuration, including six macroglobulin domains (MG1-MG6; nomenclature follows ref. 5) arranged in a ring, termed the beta-ring. However, because neither C3 nor C3c is active in complement activation and regulation, questions about function can be answered only through direct observations on C3b. Here we present a structure of C3b that reveals a marked loss of secondary structure in the CUB (for 'complement C1r/C1s, Uegf, Bmp1') domain, which together with the resulting translocation of the thioester domain provides a molecular basis for conformational changes accompanying the conversion of C3 to C3b. The total conformational changes make many proposed ligand-binding sites more accessible and create a cavity that shields target peptide bonds from access by factor I. A covalently bound N-acetyl-l-threonine residue demonstrates the geometry of C3b attachment to surface hydroxyl groups.

About this Structure

2HR0 is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.

Reference

The structure of complement C3b provides insights into complement activation and regulation., Abdul Ajees A, Gunasekaran K, Volanakis JE, Narayana SV, Kotwal GJ, Murthy HM, Nature. 2006 Nov 9;444(7116):221-5. Epub 2006 Oct 15. PMID:17051152

Page seeded by OCA on Mon Mar 31 03:34:10 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA, Jaime Prilusky, Eric Martz

Personal tools