User:Rebeca B. Candia/Sandbox 1
From Proteopedia
(Difference between revisions)
| Line 19: | Line 19: | ||
'''General Secondary Structure Patterns''' | '''General Secondary Structure Patterns''' | ||
| - | The <scene name='78/788815/Alpha-helices_and_beta-sheets/1'>secondary structure</scene> is basically composed of two alpha-helices (in <font color='red'><b>red</b></font>) and a short helical segment (in <font color='magenta'><b>magenta</b></font>), and seven antiparallel beta-sheets, '''in each monomer''', represented here as six <span style="color:springgreen;background-color:darkgrey;font-weight:bold;">green setae</span> and one short | + | The <scene name='78/788815/Alpha-helices_and_beta-sheets/1'>secondary structure</scene> is basically composed of two alpha-helices (in <font color='red'><b>red</b></font>) and a short helical segment (in <font color='magenta'><b>magenta</b></font>), and seven antiparallel beta-sheets, '''in each monomer''', represented here as six <span style="color:springgreen;background-color:darkgrey;font-weight:bold;">green setae</span> and one short region colored <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>. <font color='dodgerblue'><b>Turns</b></font> and <span style="color:white;background-color:darkseagreen;font-weight:bold;">coils</span> are also represented. |
| - | You can also view the monomer isolated here | + | You can also view the monomer isolated <scene name='78/788815/Isolated_monomer/1'>here</scene>. |
| - | From the <scene name='78/788815/ | + | From the <scene name='78/788815/N_and_c_terminus/1'>N-terminus to the C-terminus</scene> (blue represents the N-terminus, while red the C-terminus),in the monomer, the short helical segment called <scene name='78/788815/Alpha_1/1'>alpha-helix 1</scene> goes from Leu 68 to Gln 63, <scene name='78/788815/Alpha_2/1'>alpha-helix 2</scene> ranges from Glu 93 to Glu 76, while <scene name='78/788815/Alpha_3/1'>alpha-helix 3</scene> goes from Leu 171 to Ser 158. |
| - | The sequences comprising each beta-sheet are the following: | + | The sequences comprising each beta-sheet are the following: Pro 100-Ser 105 for <scene name='78/788815/Beta_1/1'>beta 1</scene>, Val 108-Ile 113 for <scene name='78/788815/Beta_2/1'>beta 2</scene>, Gln 124-Gly 117 for <scene name='78/788815/Beta_3/1'>beta 3</scene>, Ser 134-Gln 129 for <scene name='78/788815/Beta_4/1'>beta 4</scene>, Asp 143-Gly 138 for <scene name='78/788815/Beta_5/1'>beta 5</scene>, Trp 149-Leu 152 for <scene name='78/788815/Beta_6/1'>beta 6</scene> and the short region between Lys 157-Gly 155 for <scene name='78/788815/Beta_7/1'>beta 7</scene>. |
Each subunit has a folding pattern called α/β sandwich, in wich two alpha-helices are packed against five strands of antiparallel beta-sheets. <scene name='78/788815/Ab_folding/1'>Click here</scene> to see it in the whole trimeric form. | Each subunit has a folding pattern called α/β sandwich, in wich two alpha-helices are packed against five strands of antiparallel beta-sheets. <scene name='78/788815/Ab_folding/1'>Click here</scene> to see it in the whole trimeric form. | ||
| Line 33: | Line 33: | ||
'''Stabilization of the Trimeric Tertiary Structure''' | '''Stabilization of the Trimeric Tertiary Structure''' | ||
| - | The trimeric structure of frataxin is mainly stabilized by the <scene name='78/788815/Stabilization_of_trimer/1'>N-terminal extensions</scene> of each subunit, shown in <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>. These consist of loops, with a short helical N-terminal segment (alpha-helix 1; recall its secondary structure) higly flexible in the monomer solution, but interestingly, when in the trimeric arragement, they play a crucial role in mantaining it. Viewing <scene name='78/788815/Stabilization_of_trimer_back/2'>the other side</scene> of the molecule, we can notice how the N-terminal extensions, still in <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>, interact with the <font color='rosybrown'><b>adjacent monomer</b></font>. Taking a <scene name='78/788815/Stabilization_of_trimer_zoom_1/3'>closer look</scene>, it is possible figure out how the N-terminal loop of the first monomer, here described as chain A, is placed with respect to chain B. | + | The trimeric structure of frataxin consists of the association of three monomers, and is mainly stabilized by the <scene name='78/788815/Stabilization_of_trimer/1'>N-terminal extensions</scene> of each subunit, shown in <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>. These consist of loops, with a short helical N-terminal segment (alpha-helix 1; recall its secondary structure) higly flexible in the monomer solution, but interestingly, when in the trimeric arragement, they play a crucial role in mantaining it. Viewing <scene name='78/788815/Stabilization_of_trimer_back/2'>the other side</scene> of the molecule, we can notice how the N-terminal extensions, still in <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>, interact with the <font color='rosybrown'><b>adjacent monomer</b></font>. Taking a <scene name='78/788815/Stabilization_of_trimer_zoom_1/3'>closer look</scene>, it is possible figure out how the N-terminal loop of the first monomer, here described as chain A, is placed with respect to chain B. |
<scene name='78/788815/Stabilization_of_trimer_resid1/4'>Exploring even further</scene> the details, it is possible to see some residues close enough to interact. The names associated with their positions can be seen by <scene name='78/788815/All_residues_at_end/1'>clicking here</scene>. | <scene name='78/788815/Stabilization_of_trimer_resid1/4'>Exploring even further</scene> the details, it is possible to see some residues close enough to interact. The names associated with their positions can be seen by <scene name='78/788815/All_residues_at_end/1'>clicking here</scene>. | ||
| Line 45: | Line 45: | ||
The other type of hydrogen bonding occurs between the side chains of the aminoacids involved in the pairs <scene name='78/788815/His_74_asp_79/1'>His 74 and Asp 79</scene>, <scene name='78/788815/Asp_78_and_lys_123/1'>Asp 78 and Lys 123</scene> and <scene name='78/788815/Glu76-arg141/2'>Glu76 and Arg141</scene>. In any of each ways, there is always an <font color='red'><b>oxygen</b></font> and a <font color='blue'><b>nitrogen</b></font> involved. | The other type of hydrogen bonding occurs between the side chains of the aminoacids involved in the pairs <scene name='78/788815/His_74_asp_79/1'>His 74 and Asp 79</scene>, <scene name='78/788815/Asp_78_and_lys_123/1'>Asp 78 and Lys 123</scene> and <scene name='78/788815/Glu76-arg141/2'>Glu76 and Arg141</scene>. In any of each ways, there is always an <font color='red'><b>oxygen</b></font> and a <font color='blue'><b>nitrogen</b></font> involved. | ||
| + | ---- | ||
| + | ---- | ||
| + | '''The Role of the Channel''' | ||
| - | |||
| - | |||
| - | |||
| - | |||
| - | '''The Role of the Channel''' | ||
Revision as of 19:48, 17 June 2018
Frataxin
| |||||||||||
References
yellow
red
