User:Rebeca B. Candia/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 33: Line 33:
'''Stabilization of the Trimeric Tertiary Structure'''
'''Stabilization of the Trimeric Tertiary Structure'''
-
The trimeric structure of frataxin consists of the association of three monomers, and is mainly stabilized by the <scene name='78/788815/Stabilization_of_trimer/1'>N-terminal extensions</scene> of each subunit, shown in <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>. These consist of loops, with a short helical N-terminal segment (alpha-helix 1; recall its secondary structure) higly flexible in the monomer solution, but interestingly, when in the trimeric arragement, they play a crucial role in mantaining it. Viewing <scene name='78/788815/Stabilization_of_trimer_back/2'>the other side</scene> of the molecule, we can notice how the N-terminal extensions, still in <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>, interact with the <font color='rosybrown'><b>adjacent monomer</b></font>. Taking a <scene name='78/788815/Stabilization_of_trimer_zoom_1/3'>closer look</scene>, it is possible figure out how the N-terminal loop of the first monomer, here described as chain A, is placed with respect to chain B.
+
The trimeric structure of frataxin consists of the association of three monomers, and is mainly stabilized by the <scene name='78/788815/Stabilization_of_trimer/1'>N-terminal extensions</scene> of each subunit, shown in <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>. These consist of loops, with a short helical N-terminal segment (alpha-helix 1; recall its secondary structure) highly flexible in the monomer solution, but interestingly, when in the trimeric arragement, they play a crucial role in mantaining it. Viewing <scene name='78/788815/Stabilization_of_trimer_back/2'>the other side</scene> of the molecule, we can notice how the N-terminal extensions, still in <span style="color:yellow;background-color:darkgrey;font-weight:bold;">yellow</span>, interact with the <font color='rosybrown'><b>adjacent monomer</b></font>. Taking a <scene name='78/788815/Stabilization_of_trimer_zoom_1/3'>closer look</scene>, it is possible figure out how the N-terminal loop of the first monomer, here described as chain A, is placed with respect to chain B.
<scene name='78/788815/Stabilization_of_trimer_resid1/4'>Exploring even further</scene> the details, it is possible to see some residues close enough to interact. The names associated with their positions can be seen by <scene name='78/788815/All_residues_at_end/1'>clicking here</scene>.
<scene name='78/788815/Stabilization_of_trimer_resid1/4'>Exploring even further</scene> the details, it is possible to see some residues close enough to interact. The names associated with their positions can be seen by <scene name='78/788815/All_residues_at_end/1'>clicking here</scene>.
Line 51: Line 51:
'''The Role of the Channel'''
'''The Role of the Channel'''
 +
The channel of the trimer is formed at its 3-fold axis, in a central position. Its has importance in catalysing the oxidation of iron, but also acts to further stabilise the trimeric form.
 +
 +
<scene name='78/786054/Hydrophobic_lid/3'>Hydrophobic lid</scene>
<scene name='78/786054/Hydrophobic_lid/3'>Hydrophobic lid</scene>
<scene name='78/786054/125-128/2'>125-128</scene>
<scene name='78/786054/125-128/2'>125-128</scene>

Revision as of 20:15, 17 June 2018

Frataxin

Caption for this structure

Drag the structure with the mouse to rotate

References


yellow








red



Proteopedia Page Contributors and Editors (what is this?)

Rebeca B. Candia

Personal tools