6bfi

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='6bfi' size='340' side='right' caption='[[6bfi]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
<StructureSection load='6bfi' size='340' side='right' caption='[[6bfi]], [[Resolution|resolution]] 2.30&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6bfi]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6BFI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6BFI FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6bfi]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/B-6616 B-6616]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6BFI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6BFI FirstGlance]. <br>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6bfi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6bfi OCA], [http://pdbe.org/6bfi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6bfi RCSB], [http://www.ebi.ac.uk/pdbsum/6bfi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6bfi ProSAT]</span></td></tr>
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6bfi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6bfi OCA], [http://pdbe.org/6bfi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6bfi RCSB], [http://www.ebi.ac.uk/pdbsum/6bfi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6bfi ProSAT]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The evolution of cell adhesion mechanisms in animals facilitated the assembly of organized multicellular tissues. Studies in traditional animal models have revealed two predominant adhesion structures, the adherens junction (AJ) and focal adhesions (FAs), which are involved in the attachment of neighboring cells to each other and to the secreted extracellular matrix (ECM), respectively. The AJ (containing cadherins and catenins) and FAs (comprising integrins, talin, and paxillin) differ in protein composition, but both junctions contain the actin-binding protein vinculin. The near ubiquity of these structures in animals suggests that AJ and FAs evolved early, possibly coincident with multicellularity. However, a challenge to this perspective is that previous studies of sponges-a divergent animal lineage-indicate that their tissues are organized primarily by an alternative, sponge-specific cell adhesion mechanism called "aggregation factor." In this study, we examined the structure, biochemical properties, and tissue localization of a vinculin ortholog in the sponge Oscarella pearsei (Op). Our results indicate that Op vinculin localizes to both cell-cell and cell-ECM contacts and has biochemical and structural properties similar to those of vertebrate vinculin. We propose that Op vinculin played a role in cell adhesion and tissue organization in the last common ancestor of sponges and other animals. These findings provide compelling evidence that sponge tissues are indeed organized like epithelia in other animals and support the notion that AJ- and FA-like structures extend to the earliest periods of animal evolution.
 +
 +
Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution.,Miller PW, Pokutta S, Mitchell JM, Chodaparambil JV, Clarke DN, Nelson W, Weis WI, Nichols SA J Biol Chem. 2018 Jun 7. pii: RA117.001325. doi: 10.1074/jbc.RA117.001325. PMID:29880641<ref>PMID:29880641</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6bfi" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: B-6616]]
[[Category: Chodaparambil, J V]]
[[Category: Chodaparambil, J V]]
[[Category: Weis, W I]]
[[Category: Weis, W I]]
[[Category: Cell adhesion]]
[[Category: Cell adhesion]]
[[Category: Vinculin]]
[[Category: Vinculin]]

Revision as of 06:22, 20 June 2018

Vinculin homolog in a sponge (phylum Porifera) reveals vertebrate-like cell adhesions involved in early multicellular evolution

6bfi, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools