6dcl
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='6dcl' size='340' side='right' caption='[[6dcl]], [[Resolution|resolution]] 2.50Å' scene=''> | <StructureSection load='6dcl' size='340' side='right' caption='[[6dcl]], [[Resolution|resolution]] 2.50Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6dcl]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DCL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DCL FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6dcl]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DCL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DCL FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene></td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HNRNPA1, HNRPA1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6dcl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dcl OCA], [http://pdbe.org/6dcl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6dcl RCSB], [http://www.ebi.ac.uk/pdbsum/6dcl PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6dcl ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6dcl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dcl OCA], [http://pdbe.org/6dcl PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6dcl RCSB], [http://www.ebi.ac.uk/pdbsum/6dcl PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6dcl ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/ROA1_HUMAN ROA1_HUMAN]] Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. May play a role in HCV RNA replication.<ref>PMID:17229681</ref> | [[http://www.uniprot.org/uniprot/ROA1_HUMAN ROA1_HUMAN]] Involved in the packaging of pre-mRNA into hnRNP particles, transport of poly(A) mRNA from the nucleus to the cytoplasm and may modulate splice site selection. May play a role in HCV RNA replication.<ref>PMID:17229681</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Post-transcriptional mechanisms play a predominant role in the control of microRNA (miRNA) production. Recognition of the terminal loop of precursor miRNAs by RNA-binding proteins (RBPs) influences their processing; however, the mechanistic basis for how levels of individual or subsets of miRNAs are regulated is mostly unexplored. We previously showed that hnRNP A1, an RBP implicated in many aspects of RNA processing, acts as an auxiliary factor that promotes the Microprocessor-mediated processing of pri-mir-18a. Here, by using an integrative structural biology approach, we show that hnRNP A1 forms a 1:1 complex with pri-mir-18a where both RNA recognition motifs (RRMs) bind to cognate RNA sequence motifs in the terminal loop of pri-mir-18a. Terminal loop binding induces an allosteric destabilization of base-pairing in the pri-mir-18a stem that promotes its downstream processing. Our results highlight terminal loop RNA recognition by RBPs as a potential general principle of miRNA biogenesis and regulation. | ||
+ | |||
+ | Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1.,Kooshapur H, Choudhury NR, Simon B, Muhlbauer M, Jussupow A, Fernandez N, Jones AN, Dallmann A, Gabel F, Camilloni C, Michlewski G, Caceres JF, Sattler M Nat Commun. 2018 Jun 26;9(1):2479. doi: 10.1038/s41467-018-04871-9. PMID:29946118<ref>PMID:29946118</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6dcl" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Human]] | ||
[[Category: Kooshapur, H]] | [[Category: Kooshapur, H]] | ||
[[Category: Sattler, M]] | [[Category: Sattler, M]] |
Revision as of 06:16, 11 July 2018
Crystal structure of UP1 bound to pri-miRNA-18a terminal loop
|