5u2o
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='5u2o' size='340' side='right' caption='[[5u2o]], [[Resolution|resolution]] 1.46Å' scene=''> | <StructureSection load='5u2o' size='340' side='right' caption='[[5u2o]], [[Resolution|resolution]] 1.46Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[5u2o]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5U2O OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5U2O FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5u2o]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Theck Theck]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5U2O OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5U2O FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FLC:CITRATE+ANION'>FLC</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5u0h|5u0h]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5u0h|5u0h]]</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5u2o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5u2o OCA], [http://pdbe.org/5u2o PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5u2o RCSB], [http://www.ebi.ac.uk/pdbsum/5u2o PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5u2o ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5u2o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5u2o OCA], [http://pdbe.org/5u2o PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5u2o RCSB], [http://www.ebi.ac.uk/pdbsum/5u2o PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5u2o ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The development of robust enzymes, in particular cellulases, is a key step in the success of biological routes to `second-generation' biofuels. The typical sources of the enzymes used to degrade biomass include mesophilic and thermophilic organisms. The endoglucanase J30 from glycoside hydrolase family 9 was originally identified through metagenomic analyses of compost-derived bacterial consortia. These studies, which were tailored to favor growth on targeted feedstocks, have already been shown to identify cellulases with considerable thermal tolerance. The amino-acid sequence of J30 shows comparably low identity to those of previously analyzed enzymes. As an enzyme that combines a well measurable activity with a relatively low optimal temperature (50 degrees C) and a modest thermal tolerance, it offers the potential for structural optimization aimed at increased stability. Here, the crystal structure of wild-type J30 is presented along with that of a designed triple-mutant variant with improved characteristics for industrial applications. Through the introduction of a structural Zn(2+) site, the thermal tolerance was increased by more than 10 degrees C and was paralleled by an increase in the catalytic optimum temperature by more than 5 degrees C. | ||
+ | |||
+ | Engineering glycoside hydrolase stability by the introduction of zinc binding.,Ellinghaus TL, Pereira JH, McAndrew RP, Welner DH, DeGiovanni AM, Guenther JM, Tran HM, Feldman T, Simmons BA, Sale KL, Adams PD Acta Crystallogr D Struct Biol. 2018 Jul 1;74(Pt 7):702-710. doi:, 10.1107/S2059798318006678. Epub 2018 Jun 27. PMID:29968680<ref>PMID:29968680</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 5u2o" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Theck]] | ||
[[Category: Adams, P D]] | [[Category: Adams, P D]] | ||
[[Category: Ellinghaus, T L]] | [[Category: Ellinghaus, T L]] |
Revision as of 09:09, 18 July 2018
Crystal structure of Zn-binding triple mutant of GH family 9 endoglucanase J30
|
Categories: Theck | Adams, P D | Ellinghaus, T L | McAndrew, R P | Pereira, J H | Welner, D H | Cbm30 | Gh9 | Glycoside hydrolase | Hydrolase | Ig-like domain