| Structural highlights
2l0f is a 2 chain structure with sequence from Human. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Related: | 2l0g |
Gene: | RPS27A, UBA80, UBCEP1, UBA52, UBCEP2, UBB, UBC (HUMAN) |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[POLI_HUMAN] Error-prone DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Favors Hoogsteen base-pairing in the active site. Inserts the correct base with high-fidelity opposite an adenosine template. Exhibits low fidelity and efficiency opposite a thymidine template, where it will preferentially insert guanosine. May play a role in hypermutation of immunogobulin genes. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but may not have lyase activity.[1] [2] [3] [4] [5] [6] [7]
Publication Abstract from PubMed
Cells have evolved mutagenic bypass mechanisms that prevent stalling of the replication machinery at DNA lesions. This process, translesion DNA synthesis (TLS), involves switching from high-fidelity DNA polymerases to specialized DNA polymerases that replicate through a variety of DNA lesions. In eukaryotes, polymerase switching during TLS is regulated by the DNA damage-triggered monoubiquitylation of PCNA. How the switch operates is unknown, but all TLS polymerases of the so-called Y-family possess PCNA and ubiquitin-binding domains that are important for their function. To gain insight into the structural mechanisms underlying the regulation of TLS by ubiquitylation, we have probed the interaction of ubiquitin with a conserved ubiquitin-binding motif (UBM2) of Y-family polymerase Poliota. Using NMR spectroscopy, we have determined the structure of a complex of human Poliota UBM2 and ubiquitin, revealing a novel ubiquitin recognition fold consisting of two alpha-helices separated by a central trans-proline residue conserved in all UBMs. We show that, different from the majority of ubiquitin complexes characterized to date, ubiquitin residue Ile44 only plays a modest role in the association of ubiquitin with Poliota UBM2. Instead, binding of UBM2 is centered on the recognition of Leu8 in ubiquitin, which is essential for the interaction.
Structural Basis of Ubiquitin Recognition by Translesion Synthesis DNA Polymerase iota,Cui G, Benirschke RC, Tuan HF, Juranic N, Macura S, Botuyan MV, Mer G Biochemistry. 2010 Nov 30;49(47):10198-10207. Epub 2010 Nov 4. PMID:21049971[8]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tissier A, Frank EG, McDonald JP, Iwai S, Hanaoka F, Woodgate R. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase iota. EMBO J. 2000 Oct 2;19(19):5259-66. PMID:11013228 doi:http://dx.doi.org/10.1093/emboj/19.19.5259
- ↑ Bebenek K, Tissier A, Frank EG, McDonald JP, Prasad R, Wilson SH, Woodgate R, Kunkel TA. 5'-Deoxyribose phosphate lyase activity of human DNA polymerase iota in vitro. Science. 2001 Mar 16;291(5511):2156-9. PMID:11251121 doi:http://dx.doi.org/10.1126/science.1058386
- ↑ Frank EG, Tissier A, McDonald JP, Rapic-Otrin V, Zeng X, Gearhart PJ, Woodgate R. Altered nucleotide misinsertion fidelity associated with poliota-dependent replication at the end of a DNA template. EMBO J. 2001 Jun 1;20(11):2914-22. PMID:11387224 doi:http://dx.doi.org/10.1093/emboj/20.11.2914
- ↑ Faili A, Aoufouchi S, Flatter E, Gueranger Q, Reynaud CA, Weill JC. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature. 2002 Oct 31;419(6910):944-7. PMID:12410315 doi:http://dx.doi.org/10.1038/nature01117
- ↑ Haracska L, Prakash L, Prakash S. A mechanism for the exclusion of low-fidelity human Y-family DNA polymerases from base excision repair. Genes Dev. 2003 Nov 15;17(22):2777-85. PMID:14630940 doi:10.1101/gad.1146103
- ↑ Washington MT, Minko IG, Johnson RE, Wolfle WT, Harris TM, Lloyd RS, Prakash S, Prakash L. Efficient and error-free replication past a minor-groove DNA adduct by the sequential action of human DNA polymerases iota and kappa. Mol Cell Biol. 2004 Jul;24(13):5687-93. PMID:15199127 doi:http://dx.doi.org/10.1128/MCB.24.13.5687-5693.2004
- ↑ Nair DT, Johnson RE, Prakash S, Prakash L, Aggarwal AK. Replication by human DNA polymerase-iota occurs by Hoogsteen base-pairing. Nature. 2004 Jul 15;430(6997):377-80. PMID:15254543 doi:10.1038/nature02692
- ↑ Cui G, Benirschke RC, Tuan HF, Juranic N, Macura S, Botuyan MV, Mer G. Structural Basis of Ubiquitin Recognition by Translesion Synthesis DNA Polymerase iota Biochemistry. 2010 Nov 30;49(47):10198-10207. Epub 2010 Nov 4. PMID:21049971 doi:10.1021/bi101303t
|