Journal:Molecular Cell:2
From Proteopedia
(Difference between revisions)

Line 5: | Line 5: | ||
<b>Molecular Tour</b><br> | <b>Molecular Tour</b><br> | ||
Substantial improvements in enzyme activity demand multiple mutations at spatially proximal positions in the active site. Such mutations, however, often exhibit unpredictable epistatic (non-additive) effects on activity. We describe FuncLib - an automated method to design multipoint mutants at enzyme active sites using phylogenetic analysis and Rosetta design calculations. FuncLib was applied to two unrelated enzymes, a phosphotriesterase (PTE) and an acetyl-CoA synthetase. All designs were active, and most showed activity profiles that significantly differed from wild type and from one another. Several dozen designs with only 3-6 active-site mutations nevertheless exhibited 10-4,000-fold higher efficiencies with a range of alternative substrates, including the hydrolys is of the toxic nerve agents soman and cyclosarin and the synthesis of butyryl-CoA - activities that are hardly detectable in the wild type enzymes. FuncLib designs included epistatic active-site mutations that are unlikely to be accessible to natural and laboratory evolution; the method circumvents high-throughput screens and opens the way to design highly efficient and diverse catalytic repertoires. FuncLib is implemented as a web-server ([http://funclib.weizmann.ac.il| http://funclib.weizmann.ac.il]). | Substantial improvements in enzyme activity demand multiple mutations at spatially proximal positions in the active site. Such mutations, however, often exhibit unpredictable epistatic (non-additive) effects on activity. We describe FuncLib - an automated method to design multipoint mutants at enzyme active sites using phylogenetic analysis and Rosetta design calculations. FuncLib was applied to two unrelated enzymes, a phosphotriesterase (PTE) and an acetyl-CoA synthetase. All designs were active, and most showed activity profiles that significantly differed from wild type and from one another. Several dozen designs with only 3-6 active-site mutations nevertheless exhibited 10-4,000-fold higher efficiencies with a range of alternative substrates, including the hydrolys is of the toxic nerve agents soman and cyclosarin and the synthesis of butyryl-CoA - activities that are hardly detectable in the wild type enzymes. FuncLib designs included epistatic active-site mutations that are unlikely to be accessible to natural and laboratory evolution; the method circumvents high-throughput screens and opens the way to design highly efficient and diverse catalytic repertoires. FuncLib is implemented as a web-server ([http://funclib.weizmann.ac.il| http://funclib.weizmann.ac.il]). | ||
+ | |||
+ | The focal point of our study was the phosphotriesterase (PTE) from ''Pseudomonas diminuta''. PTE is a promiscuous metalloenzyme: in addition to highly efficient hydrolysis of the organophosphate pesticide paraoxon (k<sub>cat</sub>/K<sub>M</sub> approximately 10<sup>8</sup> M<sup>-1</sup>s<sup>-1</sup>), it promiscuously hydrolyzes esters, lactones, and diverse organophosphates, including toxic nerve agents, such as VX, Russian VX, soman (GD), and cyclosarin (GF), albeit with k<sub>cat</sub>/K<sub>M</sub> values that are orders-of-magnitude lower than for paraoxon. Effective organophosphate detoxification, however, demands high catalytic efficiency, with k<sub>cat</sub>/K<sub>M</sub> of 10<sup>7</sup> M<sup>-1</sup>min<sup>-1</sup> considered a minimum for ''in vivo'' protection, thereby motivating several recent enzyme-engineering efforts that targeted PTE. Furthermore, the growing threat from a new generation of nerve agents, similar in structure to VX and GF, emphasizes the need for broad-spectrum nerve-agent hydrolases. FuncLib’s goal is to design a small set of stable, efficient,and functionally diverse multipoint active-site mutants suitable for low-throughput experimental testing. The design strategy is general and can be applied, in principle, to any natural enzyme starting from its molecular structure and adiverse set of homologous sequences. | ||
<b>References</b><br> | <b>References</b><br> | ||
<references/> | <references/> | ||
</StructureSection> | </StructureSection> | ||
__NOEDITSECTION__ | __NOEDITSECTION__ |
Revision as of 12:04, 9 August 2018
|
This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.