| Structural highlights
2v7q is a 10 chain structure with sequence from Bos taurus and Bovin. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , |
Related: | 1bmf, 1e1q, 1e1r, 1e79, 1h8e, 1h8h, 1w0j, 2jdi, 2jj1, 2jj2, 2uys, 1cow, 1efr, 1nbm, 1ohh, 1qo1, 1w0k, 2ck3, 2jiz |
Activity: | Adenosine-tetraphosphatase, with EC number 3.6.1.14 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[ATIF1_BOVIN] Endogenous F(1)F(o)-ATPase inhibitor limiting ATP depletion when the mitochondrial membrane potential falls below a threshold and the F(1)F(o)-ATP synthase starts hydrolyzing ATP to pump protons out of the mitochondrial matrix. Required to avoid the consumption of cellular ATP when the F(1)F(o)-ATP synthase enzyme acts as an ATP hydrolase.[1] [2] [3] [4] [5] [6] [ATPD_BOVIN] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP turnover in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and of the central stalk which is part of the complex rotary element. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. [ATPA_BOVIN] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. Subunit alpha does not bear the catalytic high-affinity ATP-binding sites (By similarity). [ATPG_BOVIN] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and the central stalk which is part of the complex rotary element. The gamma subunit protrudes into the catalytic domain formed of alpha(3)beta(3). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. [ATPB_BOVIN] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Subunits alpha and beta form the catalytic core in F(1). Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits. [ATP5E_BOVIN] Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(1) domain and of the central stalk which is part of the complex rotary element. Rotation of the central stalk against the surrounding alpha(3)beta(3) subunits leads to hydrolysis of ATP in three separate catalytic sites on the beta subunits.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The structure of bovine F(1)-ATPase inhibited by a monomeric form of the inhibitor protein, IF(1), known as I1-60His, lacking most of the dimerization region, has been determined at 2.1-A resolution. The resolved region of the inhibitor from residues 8-50 consists of an extended structure from residues 8-13, followed by two alpha-helices from residues 14-18 and residues 21-50 linked by a turn. The binding site in the beta(DP)-alpha(DP) catalytic interface is complex with contributions from five different subunits of F(1)-ATPase. The longer helix extends from the external surface of F(1) via a deep groove made from helices and loops in the C-terminal domains of subunits beta(DP), alpha(DP), beta(TP), and alpha(TP) to the internal cavity surrounding the central stalk. The linker and shorter helix interact with the gamma-subunit in the central stalk, and the N-terminal region extends across the central cavity to interact with the nucleotide binding domain of the alpha(E) subunit. To form these complex interactions and penetrate into the core of the enzyme, it is likely that the initial interaction of the inhibitor with F(1) forms via the open conformation of the beta(E) subunit. Then, as two ATP molecules are hydrolyzed, the beta(E)-alpha(E) interface converts to the beta(DP)-alpha(DP) interface via the beta(TP)-alpha(TP) interface, trapping the inhibitor progressively in its binding site and a nucleotide in the catalytic site of subunit beta(DP). The inhibition probably arises by IF(1) imposing the structure and properties of the beta(TP)-alpha(TP) interface on the beta(DP)-alpha(DP) interface, thereby preventing it from hydrolyzing the bound ATP.
How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria.,Gledhill JR, Montgomery MG, Leslie AG, Walker JE Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15671-6. Epub 2007 Sep 25. PMID:17895376[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Klein G, Satre M, Dianoux AC, Vignais PV. Radiolabeling of natural adenosine triphosphatase inhibitor with phenyl (14C)isothiocyanate and study of its interaction with mitochondrial adenosine triphosphatase. Localization of inhibitor binding sites and stoichiometry of binding. Biochemistry. 1980 Jun 24;19(13):2919-25. PMID:7397110
- ↑ Cabezon E, Butler PJ, Runswick MJ, Walker JE. Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH. J Biol Chem. 2000 Aug 18;275(33):25460-4. PMID:10831597 doi:10.1074/jbc.M003859200
- ↑ Ando C, Ichikawa N. Glutamic acid in the inhibitory site of mitochondrial ATPase inhibitor, IF(1), participates in pH sensing in both mammals and yeast. J Biochem. 2008 Oct;144(4):547-53. doi: 10.1093/jb/mvn100. Epub 2008 Aug 7. PMID:18687699 doi:http://dx.doi.org/10.1093/jb/mvn100
- ↑ Bason JV, Runswick MJ, Fearnley IM, Walker JE. Binding of the inhibitor protein IF(1) to bovine F(1)-ATPase. J Mol Biol. 2011 Feb 25;406(3):443-53. doi: 10.1016/j.jmb.2010.12.025. Epub 2010 , Dec 28. PMID:21192948 doi:http://dx.doi.org/10.1016/j.jmb.2010.12.025
- ↑ Cabezon E, Montgomery MG, Leslie AG, Walker JE. The structure of bovine F1-ATPase in complex with its regulatory protein IF1. Nat Struct Biol. 2003 Sep;10(9):744-50. Epub 2003 Aug 17. PMID:12923572 doi:http://dx.doi.org/10.1038/nsb966
- ↑ Gledhill JR, Montgomery MG, Leslie AG, Walker JE. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15671-6. Epub 2007 Sep 25. PMID:17895376
- ↑ Gledhill JR, Montgomery MG, Leslie AG, Walker JE. How the regulatory protein, IF(1), inhibits F(1)-ATPase from bovine mitochondria. Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15671-6. Epub 2007 Sep 25. PMID:17895376
|