4fc2

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 14: Line 14:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
MuRF1 is an E3 ubiquitin ligase central to muscle catabolism. It belongs to the TRIM protein family characterized by a tripartite fold of RING, B-box and coiled-coil (CC) motifs, followed by variable C-terminal domains. The CC motif is hypothesized to be responsible for domain organization in the fold as well as for high-order assembly into functional entities. But data on CC from this family that can clarify the structural significance of this motif are scarce. We have characterized the helical region from MuRF1 and show that, contrary to expectations, its CC domain assembles unproductively, being the B2- and COS-boxes in the fold (respectively flanking the CC) that promote a native quaternary structure. In particular, the C-terminal COS-box seemingly forms an alpha-hairpin that packs against the CC, influencing its dimerization. This shows that a C-terminal variable domain can be tightly integrated within the conserved TRIM fold to modulate its structure and function. Furthermore, data from transfected muscle show that in MuRF1 the COS-box mediates the in vivo targeting of sarcoskeletal structures and points to the pharmacological relevance of the COS domain for treating MuRF1-mediated muscle atrophy.
+
Protein poly(ADP-ribosyl)ation (PARylation) regulates a number of important cellular processes. Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme responsible for hydrolyzing the poly(ADP-ribose) (PAR) polymer in vivo. Here we report crystal structures of the mouse PARG (mPARG) catalytic domain, its complexes with ADP-ribose (ADPr) and a PARG inhibitor ADP-HPD, as well as four PARG catalytic residues mutants. With these structures and biochemical analysis of 20 mPARG mutants, we provide a structural basis for understanding how the PAR polymer is recognized and hydrolyzed by mPARG. The structures and activity complementation experiment also suggest how the N-terminal flexible peptide preceding the PARG catalytic domain may regulate the enzymatic activity of PARG. This study contributes to our understanding of PARG catalytic and regulatory mechanisms as well as the rational design of PARG inhibitors.
-
Molecular basis for the fold organization and sarcomeric targeting of the muscle atrogin MuRF1.,Franke B, Gasch A, Rodriguez D, Chami M, Khan MM, Rudolf R, Bibby J, Hanashima A, Bogomolovas J, von Castelmur E, Rigden DJ, Uson I, Labeit S, Mayans O Open Biol. 2014 Mar 26;4:130172. doi: 10.1098/rsob.130172. PMID:24671946<ref>PMID:24671946</ref>
+
Crystallographic and biochemical analysis of the mouse poly(ADP-ribose) glycohydrolase.,Wang Z, Gagne JP, Poirier GG, Xu W PLoS One. 2014 Jan 21;9(1):e86010. doi: 10.1371/journal.pone.0086010. eCollection, 2014. PMID:24465839<ref>PMID:24465839</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Revision as of 08:18, 17 October 2018

Crystal structure of mouse poly(ADP-ribose) glycohydrolase (PARG) catalytic domain

4fc2, resolution 1.91Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools