We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
<span style="top:+0.2em; font-size:1.2em; padding-right:5px;float:right;">'''''ISSN 2310-6301'''''</span>
<span style="top:+0.2em; font-size:1.2em; padding-right:5px;float:right;">'''''ISSN 2310-6301'''''</span>
</td></tr>
</td></tr>
 +
<tr>
<tr>
<th style="padding: 10px;background-color: #33ff7b">Selected Pages</th>
<th style="padding: 10px;background-color: #33ff7b">Selected Pages</th>
Line 10: Line 11:
<th style="padding: 10px;background-color: #79baff">Education</th>
<th style="padding: 10px;background-color: #79baff">Education</th>
</tr>
</tr>
 +
<tr>
<tr>
<td style="padding: 5px;"> {{Proteopedia:Featured SEL/{{#expr: {{#time:U}} mod {{Proteopedia:Number of SEL articles}}}}}}</td>
<td style="padding: 5px;"> {{Proteopedia:Featured SEL/{{#expr: {{#time:U}} mod {{Proteopedia:Number of SEL articles}}}}}}</td>
Line 16: Line 18:
<td style="padding: 5px;"> {{Proteopedia:Featured EDU/{{#expr: {{#time:U}} mod {{Proteopedia:Number of EDU articles}}}}}}</td>
<td style="padding: 5px;"> {{Proteopedia:Featured EDU/{{#expr: {{#time:U}} mod {{Proteopedia:Number of EDU articles}}}}}}</td>
</tr>
</tr>
 +
 +
<tr style="font-size: 1.2em; text-align: center;">
 +
<td style="padding: 10px;background-color: #33ff7b">Other Selected Pages</td>
 +
<td style="padding: 10px;background-color: #dae4d9">More Art on Science</td>
 +
<td style="padding: 10px;background-color: #f1b840">Other Journals</td>
 +
<td style="padding: 10px;background-color: #79baff">More on Education</td>
 +
</tr>
 +
 +
 +
<tr style="font-size: 1.2em; text-align: center;">
 +
<td style="padding: 10px;>How to author pages and contribute to Proteopedia</td>
 +
<td style="padding: 10px;></td>
 +
<td style="padding: 10px;>How to get an Interactive 3D Complement for your paper</td>
 +
<td style="padding: 10px;>How to author pages and contribute to Proteopedia</td>
 +
</tr>
 +
</table>
</table>

Revision as of 12:54, 18 October 2018

Because life has more than 2D, Proteopedia helps to understand relationships between structure and function. Proteopedia is a free, collaborative 3D-encyclopedia of proteins & other molecules. ISSN 2310-6301

Selected Pages Art on Science Journals Education

Lifecycle of SARS-CoV-2

What happens if a SARS-CoV-2 coronavirus enters your lung? This molecular animation visualises how the virus particle can take over the host cell and turns it into a virus factory. Eventually, the host cell produces so many viral particles that it dies and releases numerous new virus particles. >>> Visit this page >>>

About this image
Opening a Gate to Human Health

by Alice Clark (PDBe)
In the 1970s, an exciting discovery of a family of medicines was made by the Japanese scientist Satoshi Ōmura. One of these molecules, ivermectin, is shown in this artwork bound in the ligand binding pocket of the Farnesoid X receptor, a protein which helps regulate cholesterol in humans. This structure showed that ivermectin induced transcriptional activity of FXR and could be used to regulate metabolism.

>>> Visit this page >>>

About this image
Geobacter pili: surprising function.

Y Gu, V Srikanth, AI Salazar-Morales, R Jain, JP O'Brien, SM Yi, RK Soni, FA Samatey, SE Yalcin, NS Malvankar. Nature 2021 doi: 10.1038/s41586-021-03857-w
Geobacter pili were long thought to be electrically conductive protein nanowires composed of PilA-N. Nanowires are crucial to the energy metabolism of bacteria flourishing in oxygen-deprived environments. To everyone's surprise, in 2019, the long-studied nanowires were found to be linear polymers of multi-heme cytochromes, not pili. The first cryo-EM structure of pili (2021) reveals a filament made of dimers of PilA-N and PilA-C, shown. Electrical conductivity of pili is much lower than that of cytochrome nanowires. Evidence suggests that PilA-NC filaments are periplasmic pseudopili crucial for exporting cytochrome nanowires onto the cell surface, rather than the pili serving as nanowires themselves.

>>> Visit I3DC Interactive Visualizations >>>

About this image
Make Your Own Electrostatic Potential Maps

Positive (+) and Negative (-) charges on the surface of a protein molecule play crucial roles in its interactions with other molecules, and hence in its functions. Electrostatic potential maps coloring the surface of a protein molecule are a popular way to visualize the distribution of surface charges. Easy to use free software is available to to create these surface maps. Above is an integral membrane potassium channel protein. One of its 4 identical chains is removed so you can see the Negative (-) protein surface contacting the 3 K+ ions.

>>> See Examples and Get Instructions >>>

Other Selected Pages More Art on Science Other Journals More on Education
How to author pages and contribute to Proteopedia How to get an Interactive 3D Complement for your paper How to author pages and contribute to Proteopedia

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools