We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 34: Line 34:
<td style="padding: 10px;>
<td style="padding: 10px;>
-
<p>[[:Category:Featured in Selected Pages|Other Selected Pages]]</p>
 
<p>[[Help:Contents#For_authors:_contributing_content|How to add content to Proteopedia]]</p>
<p>[[Help:Contents#For_authors:_contributing_content|How to add content to Proteopedia]]</p>
<p>[[Proteopedia:Video_Guide|Video Guides]]</p>
<p>[[Proteopedia:Video_Guide|Video Guides]]</p>
Line 41: Line 40:
<td style="padding: 10px;>
<td style="padding: 10px;>
-
<p>[[:Category:Featured in Art|Featured in Art]]</p>
 
<p>[[:Category:PDB Art|All Art on Science]]</p>
<p>[[:Category:PDB Art|All Art on Science]]</p>
</td>
</td>
<td style="padding: 10px;>
<td style="padding: 10px;>
-
<p>[[:Category:Featured in I3DC|Featured in I3DC]]</p>
 
<p>[[How to get an Interactive 3D Complement for your paper]]</p>
<p>[[How to get an Interactive 3D Complement for your paper]]</p>
<p>[[Proteopedia:I3DC|List of Interactive Complements]]</p>
<p>[[Proteopedia:I3DC|List of Interactive Complements]]</p>
Line 53: Line 50:
<td style="padding: 10px;>
<td style="padding: 10px;>
-
<p>[[:Category:Featured in Education|Featured in Education]]</p>
 
<p>[[Teaching Strategies Using Proteopedia]]</p>
<p>[[Teaching Strategies Using Proteopedia]]</p>
<p>[[Teaching_Scenes%2C_Tutorials%2C_and_Educators%27_Pages|Examples of Pages for Teaching]]</p>
<p>[[Teaching_Scenes%2C_Tutorials%2C_and_Educators%27_Pages|Examples of Pages for Teaching]]</p>

Revision as of 07:09, 21 October 2018

ISSN 2310-6301

Because life has more than 2D, Proteopedia helps to understand relationships between structure and function. Proteopedia is a free, collaborative 3D-encyclopedia of proteins & other molecules.


Selected Pages Art on Science Journals Education
About this image
Coronavirus Spike Protein Membrane Fusion

by Eric Martz
SARS-CoV-2 spike protein "spears" the host membrane with a fusion peptide and drags the virus envelope membrane transmembrane domain close to the host membrane, initiating fusion. This moves the virus RNA genome into the host cell, initiating infection.
>>> Visit this page >>>

About this image
Opening a Gate to Human Health

by Alice Clark (PDBe)
In the 1970s, an exciting discovery of a family of medicines was made by the Japanese scientist Satoshi Ōmura. One of these molecules, ivermectin, is shown in this artwork bound in the ligand binding pocket of the Farnesoid X receptor, a protein which helps regulate cholesterol in humans. This structure showed that ivermectin induced transcriptional activity of FXR and could be used to regulate metabolism.

>>> Visit this page >>>

About this image
Geobacter pili: surprising function.

Y Gu, V Srikanth, AI Salazar-Morales, R Jain, JP O'Brien, SM Yi, RK Soni, FA Samatey, SE Yalcin, NS Malvankar. Nature 2021 doi: 10.1038/s41586-021-03857-w
Geobacter pili were long thought to be electrically conductive protein nanowires composed of PilA-N. Nanowires are crucial to the energy metabolism of bacteria flourishing in oxygen-deprived environments. To everyone's surprise, in 2019, the long-studied nanowires were found to be linear polymers of multi-heme cytochromes, not pili. The first cryo-EM structure of pili (2021) reveals a filament made of dimers of PilA-N and PilA-C, shown. Electrical conductivity of pili is much lower than that of cytochrome nanowires. Evidence suggests that PilA-NC filaments are periplasmic pseudopili crucial for exporting cytochrome nanowires onto the cell surface, rather than the pili serving as nanowires themselves.

>>> Visit I3DC Interactive Visualizations >>>

About this image
Make Your Own Electrostatic Potential Maps

Positive (+) and Negative (-) charges on the surface of a protein molecule play crucial roles in its interactions with other molecules, and hence in its functions. Electrostatic potential maps coloring the surface of a protein molecule are a popular way to visualize the distribution of surface charges. Easy to use free software is available to to create these surface maps. Above is an integral membrane potassium channel protein. One of its 4 identical chains is removed so you can see the Negative (-) protein surface contacting the 3 K+ ions.

>>> See Examples and Get Instructions >>>

How to add content to Proteopedia

Video Guides

Who knows ...

All Art on Science

How to get an Interactive 3D Complement for your paper

List of Interactive Complements

About Interactive 3D Complements

Teaching Strategies Using Proteopedia

Examples of Pages for Teaching

How to author pages and contribute to Proteopedia

About Image:Contact-email.png Table of Contents Structure Index Help

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools