Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 44: Line 44:
<td style="padding: 10px;>
<td style="padding: 10px;>
-
<p>[[How to get an Interactive 3D Complement for your paper]]</p>
+
<p>[[Proteopedia:I3DC|List of Interactive 3D Complements (I3DC)]]</p>
-
<p>[[Proteopedia:I3DC|List of Interactive Complements]]</p>
+
<p>[[How to get an I3DC for your paper]]</p>
-
<p>[[I3DC|About Interactive 3D Complements]]</p>
+
<p>[[I3DC|About I3DC]]</p>
</td>
</td>

Revision as of 07:14, 21 October 2018

ISSN 2310-6301

Because life has more than 2D, Proteopedia helps to understand relationships between structure and function. Proteopedia is a free, collaborative 3D-encyclopedia of proteins & other molecules.


Selected Pages Art on Science Journals Education
About this image
The ribosome

by Wayne Decatur
The 2009 Nobel Prize in Chemistry was awarded for studies of the ribosome. The ribosome is the machine in your cells that accurately and efficiently decodes the genetic information stored in your genome and synthesizes the corresponding polypeptide chain one amino acid at a time in the process of translation. These structures are considered landmarks for the fact they showed clearly the major contributions to decoding and peptide bond synthesis come from RNA and not protein, as well as for the sheer size of the structures determined.

>>> Visit this page >>>

About this image
Opening a Gate to Human Health

by Alice Clark (PDBe)
In the 1970s, an exciting discovery of a family of medicines was made by the Japanese scientist Satoshi Ōmura. One of these molecules, ivermectin, is shown in this artwork bound in the ligand binding pocket of the Farnesoid X receptor, a protein which helps regulate cholesterol in humans. This structure showed that ivermectin induced transcriptional activity of FXR and could be used to regulate metabolism.

>>> Visit this page >>>

About this image
Interconversion of the specificities of human lysosomal enzymes associated with Fabry and Schindler diseases.

IB Tomasic, MC Metcalf, AI Guce, NE Clark, SC Garman. J. Biol. Chem. 2010 doi: 10.1074/jbc.M110.118588
The human lysosomal enzymes α-galactosidase and α-N-acetylgalactosaminidase share 46% amino acid sequence identity and have similar folds. Using a rational protein engineering approach, we interconverted the enzymatic specificity of α-GAL and α-NAGAL. The engineered α-GAL retains the antigenicity but has acquired the enzymatic specificity of α-NAGAL. Conversely, the engineered α-NAGAL retains the antigenicity but has acquired the enzymatic specificity of the α-GAL enzyme. Comparison of the crystal structures of the designed enzyme to the wild-type enzymes shows that active sites superimpose well, indicating success of the rational design. The designed enzymes might be useful as non-immunogenic alternatives in enzyme replacement therapy for treatment of lysosomal storage disorders such as Fabry disease.

>>> Visit this I3DC complement >>>

About this image
Eastern Equine Encephalitis virus
Although only a few people in the USA get Eastern Equine Encephalitis every year, the fatality rate is 30%, and many survivors have ongoing neurological problems. The virus is transmitted by mosquitoes from animals, especially birds, to humans. This RNA virus has a complicated capsid (a slab of which is shown) composed of protein shells with an enclosed lipid bilayer. The structures of virus capsids can be explored using free FirstGlance in Jmol.

>>> Visit I3DC Interactive Visualizations >>>

How to add content to Proteopedia

Video Guides

Who knows ...

All Art on Science

List of Interactive 3D Complements (I3DC)

How to get an I3DC for your paper

About I3DC

Teaching Strategies Using Proteopedia

Examples of Pages for Teaching

How to author pages and contribute to Proteopedia

About Image:Contact-email.png Table of Contents Structure Index Help

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools