Structural highlights
Disease
[TYK2_HUMAN] Mendelian susceptibility to mycobacterial diseases;Autosomal recessive hyper IgE syndrome. Defects in TYK2 are the cause of protein-tyrosine kinase 2 deficiency (TYK2 deficiency) [MIM:611521]; also known as autosomal recessive hyper-IgE syndrome (HIES) with atypical mycobacteriosis. TYK2 deficiency consists of a primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and highly elevated serum IgE.
Function
[TYK2_HUMAN] Probably involved in intracellular signal transduction by being involved in the initiation of type I IFN signaling. Phosphorylates the interferon-alpha/beta receptor alpha chain.[1]
Publication Abstract from PubMed
Janus kinases (JAKs) are considered promising targets for the treatment of autoimmune diseases including rheumatoid arthritis (RA) due to their important role in multiple cytokine receptor signaling pathways. Recently, several JAK inhibitors have been developed for the treatment of RA. Here, we describe the identification of the novel orally bioavailable JAK inhibitor 18, peficitinib (also known as ASP015K), which showed moderate selectivity for JAK3 over JAK1, JAK2, and TYK2 in enzyme assays. Chemical modification at the C4-position of lead compound 5 led to a large increase in JAK inhibitory activity and metabolic stability in liver microsomes. Furthermore, we determined the crystal structures of JAK1, JAK2, JAK3, and TYK2 in a complex with peficitinib, and revealed that the 1H-pyrrolo[2,3-b]pyridine-5-carboxamide scaffold of peficitinib forms triple hydrogen bonds with the hinge region. Interestingly, the binding modes of peficitinib in the ATP-binding pockets differed among JAK1, JAK2, JAK3, and TYK2. WaterMap analysis of the crystal structures suggests that unfavorable water molecules are the likely reason for the difference in orientation of the 1H-pyrrolo[2,3-b]pyridine-5-carboxamide scaffold to the hinge region among JAKs.
Discovery and structural characterization of peficitinib (ASP015K) as a novel and potent JAK inhibitor.,Hamaguchi H, Amano Y, Moritomo A, Shirakami S, Nakajima Y, Nakai K, Nomura N, Ito M, Higashi Y, Inoue T Bioorg Med Chem. 2018 Aug 4. pii: S0968-0896(18)31300-2. doi:, 10.1016/j.bmc.2018.08.005. PMID:30145050[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Colamonici O, Yan H, Domanski P, Handa R, Smalley D, Mullersman J, Witte M, Krishnan K, Krolewski J. Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol Cell Biol. 1994 Dec;14(12):8133-42. PMID:7526154
- ↑ Hamaguchi H, Amano Y, Moritomo A, Shirakami S, Nakajima Y, Nakai K, Nomura N, Ito M, Higashi Y, Inoue T. Discovery and structural characterization of peficitinib (ASP015K) as a novel and potent JAK inhibitor. Bioorg Med Chem. 2018 Aug 4. pii: S0968-0896(18)31300-2. doi:, 10.1016/j.bmc.2018.08.005. PMID:30145050 doi:http://dx.doi.org/10.1016/j.bmc.2018.08.005