| Structural highlights
3m0d is a 4 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | |
Related: | 3m06, 3m0a |
Gene: | TRAF2 (HUMAN), TRAF1, EBI6 (HUMAN), BIRC3, API2, IAP1, MIHC, RNF49 (HUMAN) |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
[BIRC3_HUMAN] Note=A chromosomal aberration involving BIRC3 is recurrent in low-grade mucosa-associated lymphoid tissue (MALT lymphoma). Translocation t(11;18)(q21;q21) with MALT1. This translocation is found in approximately 50% of cytogenetically abnormal low-grade MALT lymphoma.
Function
[TRAF2_HUMAN] Regulates activation of NF-kappa-B and JNK and plays a central role in the regulation of cell survival and apoptosis. Required for normal antibody isotype switching from IgM to IgG. Has E3 ubiquitin-protein ligase activity and promotes 'Lys-63'-linked ubiquitination of target proteins, such as BIRC3, RIPK1 and TICAM1. Is an essential constituent of several E3 ubiquitin-protein ligase complexes, where it promotes the ubiquitination of target proteins by bringing them into contact with other E3 ubiquitin ligases. Regulates BIRC2 and BIRC3 protein levels by inhibiting their autoubiquitination and subsequent degradation; this does not depend on the TRAF2 RING-type zinc finger domain.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [BIRC3_HUMAN] Multi-functional protein which regulates not only caspases and apoptosis, but also modulates inflammatory signaling and immunity, mitogenic kinase signaling and cell proliferation, as well as cell invasion and metastasis. Acts as an E3 ubiquitin-protein ligase regulating NF-kappa-B signaling and regulates both canonical and non-canonical NF-kappa-B signaling by acting in opposite directions: acts as a positive regulator of the canonical pathway and suppresses constitutive activation of non-canonical NF-kappa-B signaling. The target proteins for its E3 ubiquitin-protein ligase activity include: RIPK1, RIPK2, RIPK3, RIPK4, CASP3, CASP7, CASP8, TRAF1, and BCL10. Acts as an important regulator of innate immune signaling via regulation of Toll-like receptors (TLRs), Nodlike receptors (NLRs) and RIG-I like receptors (RLRs), collectively referred to as pattern recognition receptors (PRRs). Protects cells from spontaneous formation of the ripoptosome, a large multi-protein complex that has the capability to kill cancer cells in a caspase-dependent and caspase-independent manner. Suppresses ripoptosome formation by ubiquitinating RIPK1 and CASP8.[15] [TRAF1_HUMAN] Adapter molecule that regulates the activation of NF-kappa-B and JNK. Plays a role in the regulation of cell survival and apoptosis. The heterotrimer formed by TRAF1 and TRAF2 is part of a E3 ubiquitin-protein ligase complex that promotes ubiquitination of target proteins, such as MAP3K14. The TRAF1/TRAF2 complex recruits the antiapoptotic E3 protein-ubiquitin ligases BIRC2 and BIRC3 to TNFRSF1B/TNFR2.[16] [17] [18] [19] [20] [21]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
TRAF1/2 and cIAP1/2 are members of the TNF receptor-associated factor (TRAF) and the inhibitor of apoptosis (IAP) families, respectively. They are critical for canonical and noncanonical NF-kappaB signaling pathways. Here, we report the crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes. A TRAF2 trimer interacts with one cIAP2 both in the crystal and in solution. Two chains of the TRAF2 trimer directly contact cIAP2, and key residues at the interface are confirmed by mutagenesis. TRAF1 and TRAF2 preferentially form the TRAF1: (TRAF2)(2) heterotrimer, which interacts with cIAP2 more strongly than TRAF2 alone. In contrast, TRAF1 alone interacts very weakly with cIAP2. Surprisingly, TRAF1 and one chain of TRAF2 in the TRAF1: (TRAF2)(2): cIAP2 ternary complex mediate interaction with cIAP2. Because TRAF1 is upregulated by many stimuli, it may modulate the interaction of TRAF2 with cIAP1/2, which explains regulatory roles of TRAF1 in TNF signaling.
Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation.,Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H Mol Cell. 2010 Apr 9;38(1):101-13. PMID:20385093[22]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Baud V, Liu ZG, Bennett B, Suzuki N, Xia Y, Karin M. Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev. 1999 May 15;13(10):1297-308. PMID:10346818
- ↑ Li X, Yang Y, Ashwell JD. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature. 2002 Mar 21;416(6878):345-7. PMID:11907583 doi:10.1038/416345a
- ↑ Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature. 2003 Aug 14;424(6950):793-6. PMID:12917689 doi:http://dx.doi.org/10.1038/nature01803
- ↑ He L, Grammer AC, Wu X, Lipsky PE. TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-{kappa}B activation. J Biol Chem. 2004 Dec 31;279(53):55855-65. Epub 2004 Sep 21. PMID:15383523 doi:10.1074/jbc.M407284200
- ↑ Csomos RA, Brady GF, Duckett CS. Enhanced cytoprotective effects of the inhibitor of apoptosis protein cellular IAP1 through stabilization with TRAF2. J Biol Chem. 2009 Jul 31;284(31):20531-9. doi: 10.1074/jbc.M109.029983. Epub 2009, Jun 8. PMID:19506082 doi:10.1074/jbc.M109.029983
- ↑ Li S, Wang L, Dorf ME. PKC phosphorylation of TRAF2 mediates IKKalpha/beta recruitment and K63-linked polyubiquitination. Mol Cell. 2009 Jan 16;33(1):30-42. doi: 10.1016/j.molcel.2008.11.023. PMID:19150425 doi:10.1016/j.molcel.2008.11.023
- ↑ Blackwell K, Zhang L, Thomas GS, Sun S, Nakano H, Habelhah H. TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol Cell Biol. 2009 Jan;29(2):303-14. doi: 10.1128/MCB.00699-08. Epub 2008 Nov 3. PMID:18981220 doi:10.1128/MCB.00699-08
- ↑ Sondarva G, Kundu CN, Mehrotra S, Mishra R, Rangasamy V, Sathyanarayana P, Ray RS, Rana B, Rana A. TRAF2-MLK3 interaction is essential for TNF-alpha-induced MLK3 activation. Cell Res. 2010 Jan;20(1):89-98. doi: 10.1038/cr.2009.125. Epub 2009 Nov 17. PMID:19918265 doi:10.1038/cr.2009.125
- ↑ Zhang L, Blackwell K, Shi Z, Habelhah H. The RING domain of TRAF2 plays an essential role in the inhibition of TNFalpha-induced cell death but not in the activation of NF-kappaB. J Mol Biol. 2010 Feb 26;396(3):528-39. doi: 10.1016/j.jmb.2010.01.008. Epub 2010 , Jan 11. PMID:20064526 doi:10.1016/j.jmb.2010.01.008
- ↑ Li S, Lu K, Wang J, An L, Yang G, Chen H, Cui Y, Yin X, Xie P, Xing G, He F, Zhang L. Ubiquitin ligase Smurf1 targets TRAF family proteins for ubiquitination and degradation. Mol Cell Biochem. 2010 May;338(1-2):11-7. doi: 10.1007/s11010-009-0315-y. Epub, 2009 Nov 24. PMID:19937093 doi:10.1007/s11010-009-0315-y
- ↑ Sasai M, Tatematsu M, Oshiumi H, Funami K, Matsumoto M, Hatakeyama S, Seya T. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway. Mol Immunol. 2010 Mar;47(6):1283-91. doi: 10.1016/j.molimm.2009.12.002. Epub 2010, Jan 4. PMID:20047764 doi:10.1016/j.molimm.2009.12.002
- ↑ Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, Milstien S, Spiegel S. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature. 2010 Jun 24;465(7301):1084-8. doi: 10.1038/nature09128. PMID:20577214 doi:10.1038/nature09128
- ↑ Yin Q, Lamothe B, Darnay BG, Wu H. Structural basis for the lack of E2 interaction in the RING domain of TRAF2. Biochemistry. 2009 Nov 10;48(44):10558-67. PMID:19810754 doi:10.1021/bi901462e
- ↑ Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell. 2010 Apr 9;38(1):101-13. PMID:20385093 doi:10.1016/j.molcel.2010.03.009
- ↑ Bertrand MJ, Lippens S, Staes A, Gilbert B, Roelandt R, De Medts J, Gevaert K, Declercq W, Vandenabeele P. cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4). PLoS One. 2011;6(9):e22356. doi: 10.1371/journal.pone.0022356. Epub 2011 Sep 12. PMID:21931591 doi:10.1371/journal.pone.0022356
- ↑ Irmler M, Steiner V, Ruegg C, Wajant H, Tschopp J. Caspase-induced inactivation of the anti-apoptotic TRAF1 during Fas ligand-mediated apoptosis. FEBS Lett. 2000 Feb 25;468(2-3):129-33. PMID:10692572
- ↑ Su X, Li S, Meng M, Qian W, Xie W, Chen D, Zhai Z, Shu HB. TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol. 2006 Jan;36(1):199-206. PMID:16323247 doi:10.1002/eji.200535415
- ↑ Kato T Jr, Gotoh Y, Hoffmann A, Ono Y. Negative regulation of constitutive NF-kappaB and JNK signaling by PKN1-mediated phosphorylation of TRAF1. Genes Cells. 2008 May;13(5):509-20. doi: 10.1111/j.1365-2443.2008.01182.x. PMID:18429822 doi:10.1111/j.1365-2443.2008.01182.x
- ↑ Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-kappaB alternative pathway. Mol Immunol. 2009 Oct;46(16):3278-82. doi: 10.1016/j.molimm.2009.07.029. Epub, 2009 Aug 20. PMID:19698991 doi:10.1016/j.molimm.2009.07.029
- ↑ Wicovsky A, Henkler F, Salzmann S, Scheurich P, Kneitz C, Wajant H. Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1-TNFR2 cooperation. Oncogene. 2009 Apr 16;28(15):1769-81. doi: 10.1038/onc.2009.29. Epub 2009 Mar 16. PMID:19287455 doi:10.1038/onc.2009.29
- ↑ Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell. 2010 Apr 9;38(1):101-13. PMID:20385093 doi:10.1016/j.molcel.2010.03.009
- ↑ Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H. Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell. 2010 Apr 9;38(1):101-13. PMID:20385093 doi:10.1016/j.molcel.2010.03.009
|