Carboxypeptidase A

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (07:54, 9 January 2019) (edit) (undo)
 
Line 49: Line 49:
Further detailed studies of anions have indicated that the nature of anion inhibition in the binding site is partly [http://en.wikipedia.org/wiki/Competitive_inhibition competitive].<ref name="CPA1" /> In particular, the sulfate anion (SO<sub>4</sub><sup>2-</sup>) has been of interest to researchers. In a crystallized structure of carboxypeptidase T (PDB code: [http://www.rcsb.org/pdb/explore/explore.do?structureId=1ord 1ORD]), a SO<sub>4</sub><sup>2-</sup> anion was found occupying a portion of a region that corresponds to the amino acid residues Arg127, Asn144, Arg145, and Tyr248 of the S1 subsite of carboxypeptidase A.<ref name="CPA1" /> In this case, it is understood that the SO<sub>4</sub><sup>2-</sup> anion prevents the recognition of the carboxylate group at the C-terminus of the polypeptide substrate.
Further detailed studies of anions have indicated that the nature of anion inhibition in the binding site is partly [http://en.wikipedia.org/wiki/Competitive_inhibition competitive].<ref name="CPA1" /> In particular, the sulfate anion (SO<sub>4</sub><sup>2-</sup>) has been of interest to researchers. In a crystallized structure of carboxypeptidase T (PDB code: [http://www.rcsb.org/pdb/explore/explore.do?structureId=1ord 1ORD]), a SO<sub>4</sub><sup>2-</sup> anion was found occupying a portion of a region that corresponds to the amino acid residues Arg127, Asn144, Arg145, and Tyr248 of the S1 subsite of carboxypeptidase A.<ref name="CPA1" /> In this case, it is understood that the SO<sub>4</sub><sup>2-</sup> anion prevents the recognition of the carboxylate group at the C-terminus of the polypeptide substrate.
 +
 +
==3D structures of carboxypeptidase A==
 +
 +
See [[Carboxypeptidase]]
</StructureSection>
</StructureSection>

Current revision

Bovine carboxypeptidase A (CPA)

Drag the structure with the mouse to rotate

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Bukrinsky JT, Bjerrum MJ, Kadziola A. 1998. Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. Biochemistry. 37(47):16555-16564. DOI: 10.1021/bi981678i
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Christianson DW, Lipscomb WN. 1989. Carboxypeptidase A. Acc. Chem. Res. 22:62-69.
  3. Suh J, Cho W, Chung S. 1985. Carboxypeptidase A-catalyzed hydrolysis of α-(acylamino)cinnamoyl derivatives of L-β-phenyllactate and L-phenylalaninate: evidence for acyl-enzyme intermediates. J. Am. Chem. Soc. 107:4530-4535. DOI: 10.1021/ja00301a025
  4. Hirose, J., Noji, M., Kidani, Y., Wilkins, R. 1985. Interaction of zinc ions with arsanilazotyrosine-248 carboxypeptidase A.Biochemistry. 24(14):3495-3502. DOI:10.1021/bi00335a016
  5. Geoghegan, KF, Galdes, A, Martinelli, RA, Holmquist, B, Auld, DS, Vallee, BL. 1983. Cryospectroscopy of intermediates in the mechanism of carboxypeptidase A. Biochem. 22(9):2255-2262. DOI: 10.1021/bi00278a031
  6. Kaplan, AP, Bartlett, PA. 1991. Synthesis and evaluation of an inhibitor of carboxypeptidase A with a Ki value in the femtomolar range. Biochem. 30(33):8165-8170. PMID: 1868091
  7. Worthington, K., Worthington, V. 1993. Worthington Enzyme Manual: Enzymes and Related Biochemicals. Freehold (NJ): Worthington Biochemical Corporation; [2011; accessed March 28, 2017]. Carboxypeptidase A. http://www.worthington-biochem.com/COA/
  8. Pitout, MJ, Nel, W. 1969. The inhibitory effect of ochratoxin a on bovine carboxypeptidase a in vitro. Biochem. Pharma. 18(8):1837-1843. DOI: 0.1016/0006-2952(69)90279-2
  9. Normant, E, Martres, MP, Schwartz, JC, Gros, C. 1995. Purification, cDNA cloning, functional expression, and characterization of a 26-kDa endogenous mammalian carboxypeptidase inhibitor. Proc. Natl. Acad. Sci. 92(26):12225-12229. PMCID: PMC40329

Student Contributors

  • Thomas Baldwin
  • Michael Melbardis
  • Clay Schnell
Personal tools