Polyubiquitin b
From Proteopedia
(Difference between revisions)
| Line 13: | Line 13: | ||
== Structural highlights == | == Structural highlights == | ||
Ubiquitin has lots of lysine residues throughout the protein. The lysine residues play a large part in the binding ability of the protein due to its basic properties. It is made up of three domains with a total of 229 residues. The TRAF6 RING dimer forms a catalytic complex with RING interacting with the Ubiquitin conjugate and a zinc finger domain that opposes it in the Ubiquitin contact. The TRAF5 enables Ubiquitin to transfer from a TRAF6 bound conjugate. The TRAF RING domains can synthesize Ubiquitin chains for tagging the cellular proteins for degradation. <ref> PMID: 19489726</ref> | Ubiquitin has lots of lysine residues throughout the protein. The lysine residues play a large part in the binding ability of the protein due to its basic properties. It is made up of three domains with a total of 229 residues. The TRAF6 RING dimer forms a catalytic complex with RING interacting with the Ubiquitin conjugate and a zinc finger domain that opposes it in the Ubiquitin contact. The TRAF5 enables Ubiquitin to transfer from a TRAF6 bound conjugate. The TRAF RING domains can synthesize Ubiquitin chains for tagging the cellular proteins for degradation. <ref> PMID: 19489726</ref> | ||
| - | + | ||
| + | <scene name='77/778330/Poly/1'>Ubiquitin</scene> | ||
Clicking on the <scene name='77/778330/Lysine_ubiquitin/1'>Show lysines</scene> link will show the active site lysines in space fill (CPK color) | Clicking on the <scene name='77/778330/Lysine_ubiquitin/1'>Show lysines</scene> link will show the active site lysines in space fill (CPK color) | ||
Revision as of 10:55, 4 February 2019
Ubiquitin
| |||||||||||
References
- ↑ Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjostedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlen M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014 Feb;13(2):397-406. doi: 10.1074/mcp.M113.035600. Epub, 2013 Dec 5. PMID:24309898 doi:http://dx.doi.org/10.1074/mcp.M113.035600
- ↑ https://www.ncbi.nlm.nih.gov/gene/7320
- ↑ Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjostedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlen M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014 Feb;13(2):397-406. doi: 10.1074/mcp.M113.035600. Epub, 2013 Dec 5. PMID:24309898 doi:http://dx.doi.org/10.1074/mcp.M113.035600
- ↑ http://bionumbers.hms.harvard.edu/bionumber.aspx?id=106196
- ↑ Lu Z, Hunter T. Degradation of activated protein kinases by ubiquitination. Annu Rev Biochem. 2009;78:435-75. doi: 10.1146/annurev.biochem.013008.092711. PMID:19489726 doi:http://dx.doi.org/10.1146/annurev.biochem.013008.092711
