|
|
Line 3: |
Line 3: |
| <StructureSection load='6mrh' size='340' side='right' caption='[[6mrh]], [[Resolution|resolution]] 2.02Å' scene=''> | | <StructureSection load='6mrh' size='340' side='right' caption='[[6mrh]], [[Resolution|resolution]] 2.02Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6mrh]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MRH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MRH FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6mrh]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MRH OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MRH FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> | | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSS:S-MERCAPTOCYSTEINE'>CSS</scene></td></tr> | | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSS:S-MERCAPTOCYSTEINE'>CSS</scene></td></tr> |
| <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6mr2|6mr2]], [[6mr6|6mr6]], [[6mre|6mre]], [[6mri|6mri]]</td></tr> | | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6mr2|6mr2]], [[6mr6|6mr6]], [[6mre|6mre]], [[6mri|6mri]]</td></tr> |
| + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">sufS, csdB, ynhB, b1680, JW1670 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mrh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mrh OCA], [http://pdbe.org/6mrh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mrh RCSB], [http://www.ebi.ac.uk/pdbsum/6mrh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mrh ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mrh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mrh OCA], [http://pdbe.org/6mrh PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mrh RCSB], [http://www.ebi.ac.uk/pdbsum/6mrh PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mrh ProSAT]</span></td></tr> |
| </table> | | </table> |
Line 24: |
Line 25: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Ecoli]] |
| [[Category: Dunkle, J A]] | | [[Category: Dunkle, J A]] |
| [[Category: Frantom, P A]] | | [[Category: Frantom, P A]] |
| Structural highlights
6mrh is a 1 chain structure with sequence from Ecoli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | |
NonStd Res: | |
Related: | 6mr2, 6mr6, 6mre, 6mri |
Gene: | sufS, csdB, ynhB, b1680, JW1670 (ECOLI) |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[SUFS_ECOLI] Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L-selenocysteine. Selenocysteine lyase activity is however unsure in vivo.[1] [2] [3] [4] [5]
Publication Abstract from PubMed
SufS is a type II cysteine desulfurase and acts as the initial step in the Suf Fe-S cluster assembly pathway. In Escherichia coli this pathway is utilized under conditions of oxidative stress and is resistant to reactive oxygen species. Mechanistically this means SufS must shift between protecting a covalent persulfide intermediate and making it available for transfer to the next protein partner in the pathway, SufE. Here, we report five x-ray crystal structures of SufS including a new structure of SufS containing an inward facing persulfide intermediate on C364. Additional structures of SufS variants with substitutions at the dimer interface show changes in dimer geometry and suggest a conserved beta-hairpin structure plays a role in mediating interactions with SufE. These new structures, along with previous HDX-MS and biochemical data identify an interaction network capable of communication between active-sites of the SufS dimer coordinating the shift between desulfurase and transpersulfurase activities.
Structural evidence for dimer-interface driven regulation of the type II cysteine desulfurase, SufS.,Dunkle JA, Bruno M, Outten FW, Frantom PA Biochemistry. 2018 Dec 20. doi: 10.1021/acs.biochem.8b01122. PMID:30571100[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Lacourciere GM, Mihara H, Kurihara T, Esaki N, Stadtman TC. Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate. J Biol Chem. 2000 Aug 4;275(31):23769-73. PMID:10829016 doi:10.1074/jbc.M000926200
- ↑ Takahashi Y, Tokumoto U. A third bacterial system for the assembly of iron-sulfur clusters with homologs in archaea and plastids. J Biol Chem. 2002 Aug 9;277(32):28380-3. Epub 2002 Jun 27. PMID:12089140 doi:http://dx.doi.org/10.1074/jbc.C200365200
- ↑ Mihara H, Kato S, Lacourciere GM, Stadtman TC, Kennedy RA, Kurihara T, Tokumoto U, Takahashi Y, Esaki N. The iscS gene is essential for the biosynthesis of 2-selenouridine in tRNA and the selenocysteine-containing formate dehydrogenase H. Proc Natl Acad Sci U S A. 2002 May 14;99(10):6679-83. Epub 2002 May 7. PMID:11997471 doi:http://dx.doi.org/10.1073/pnas.102176099
- ↑ Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. Biogenesis of Fe-S cluster by the bacterial Suf system: SufS and SufE form a new type of cysteine desulfurase. J Biol Chem. 2003 Oct 3;278(40):38352-9. Epub 2003 Jul 21. PMID:12876288 doi:http://dx.doi.org/10.1074/jbc.M305953200
- ↑ Outten FW, Wood MJ, Munoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem. 2003 Nov 14;278(46):45713-9. Epub 2003 Aug 26. PMID:12941942 doi:http://dx.doi.org/10.1074/jbc.M308004200
- ↑ Dunkle JA, Bruno M, Outten FW, Frantom PA. Structural evidence for dimer-interface driven regulation of the type II cysteine desulfurase, SufS. Biochemistry. 2018 Dec 20. doi: 10.1021/acs.biochem.8b01122. PMID:30571100 doi:http://dx.doi.org/10.1021/acs.biochem.8b01122
|