6bfz
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Crystal structure of enolase from E. coli with a mixture of apo form, substrate, and product form== | ==Crystal structure of enolase from E. coli with a mixture of apo form, substrate, and product form== | ||
- | <StructureSection load='6bfz' size='340' side='right' caption='[[6bfz]], [[Resolution|resolution]] 2.21Å' scene=''> | + | <StructureSection load='6bfz' size='340' side='right'caption='[[6bfz]], [[Resolution|resolution]] 2.21Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6bfz]] is a 6 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6BFZ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6BFZ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6bfz]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6BFZ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6BFZ FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2PG:2-PHOSPHOGLYCERIC+ACID'>2PG</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PEP:PHOSPHOENOLPYRUVATE'>PEP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=2PG:2-PHOSPHOGLYCERIC+ACID'>2PG</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=PEP:PHOSPHOENOLPYRUVATE'>PEP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6bfy|6bfy]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6bfy|6bfy]]</td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">eno, ECS88_3047 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphopyruvate_hydratase Phosphopyruvate hydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.11 4.2.1.11] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphopyruvate_hydratase Phosphopyruvate hydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.11 4.2.1.11] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6bfz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6bfz OCA], [http://pdbe.org/6bfz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6bfz RCSB], [http://www.ebi.ac.uk/pdbsum/6bfz PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6bfz ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6bfz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6bfz OCA], [http://pdbe.org/6bfz PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6bfz RCSB], [http://www.ebi.ac.uk/pdbsum/6bfz PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6bfz ProSAT]</span></td></tr> | ||
Line 11: | Line 12: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/ENO_ECO45 ENO_ECO45]] Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. | [[http://www.uniprot.org/uniprot/ENO_ECO45 ENO_ECO45]] Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Enolase is a glycolytic metalloenzyme involved in carbon metabolism. The advantage of targeting enolase lies in its essentiality in many biological processes such as cell wall formation and RNA turnover and as a plasminogen receptor. We initially used a DARTS assay to identify enolase as a target in Escherichia coli. The antibacterial activities of alpha-, beta-, and gamma-substituted seven-member ring tropolones were first evaluated against four strains representing a range of Gram-negative bacteria. We observed that the chemical properties and position of the substituents on the tropolone ring play an important role in the biological activity of the investigated compounds. Both alpha- and beta-substituted phenyl derivatives of tropolone were the most active with minimum inhibitory concentrations in the range of 11-14 mug/mL. The potential inhibitory activity of the synthetic tropolones was further evaluated using an enolase inhibition assay, X-ray crystallography, and molecular docking simulations. The catalytic activity of enolase was effectively inhibited by both the naturally occurring beta-thujaplicin and the alpha- and beta-substituted phenyl derivatives of tropolones with IC50 values in range of 8-11 muM. Ligand binding parameters were assessed by isothermal titration calorimetry and differential scanning calorimetry techniques and agreed with the in vitro data. Our studies validate the antibacterial potential of tropolones with careful consideration of the position and character of chelating moieties for stronger interaction with metal ions and residues in the enolase active site. | ||
+ | |||
+ | Structural and Functional Studies of Bacterial Enolase, a Potential Target against Gram-Negative Pathogens.,Krucinska J, Falcone E, Erlandsen H, Hazeen A, Lombardo MN, Estrada A, Robinson VL, Anderson AC, Wright DL Biochemistry. 2019 Mar 5;58(9):1188-1197. doi: 10.1021/acs.biochem.8b01298. Epub , 2019 Feb 15. PMID:30714720<ref>PMID:30714720</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6bfz" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Bacillus coli migula 1895]] | ||
+ | [[Category: Large Structures]] | ||
[[Category: Phosphopyruvate hydratase]] | [[Category: Phosphopyruvate hydratase]] | ||
[[Category: Erlandsen, H]] | [[Category: Erlandsen, H]] |
Revision as of 12:35, 13 March 2019
Crystal structure of enolase from E. coli with a mixture of apo form, substrate, and product form
|