Human Keto Acyl Reductase
From Proteopedia
(Difference between revisions)
Line 4: | Line 4: | ||
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | ||
- | + | Function The mitochondrial fatty acid synthesis (mtFAS) pathway generates precursors for mitochondrally generated alpha-lipoic acids. Defeciency of mtFAS leads to respiratory chain degects and mitochondrial dysfunction. The mtFAS has four enzymatic steps, catalyzed by four different enzymes. Ketoacyl acyl-carrier-protein (ACP) reductase (KAR) catalyzes the second step of mtFAS pathway, where 3-ketoacyl-ACP is reduced to 3R-hydroxyacyl-ACP utilizing NADPH as cofactor. KAR is a heterotetrameric complex made from two different polypeptides: 17β-hydroxysteroid dehydrogenase type 8 (HSD17B8 or KE6, α-subunit) and carbonyl reductase type 4 (CBR4 or SDR45C1, β-subunit)9. <ref>PMID:25203508</ref> | |
== Disease == Deficiency of the KAR or mtFAS pathway leads to respiratory chain defects and mitochondrial dysfunction in eukaryotes. | == Disease == Deficiency of the KAR or mtFAS pathway leads to respiratory chain defects and mitochondrial dysfunction in eukaryotes. |
Revision as of 15:15, 15 March 2019
==Your Heading Here (maybe something like 'Structure')==Crystal structure of heterotetrameric human ketoacyl reductase complexed with NAD and NADP
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Venkatesan R, Sah-Teli SK, Awoniyi LO, Jiang G, Prus P, Kastaniotis AJ, Hiltunen JK, Wierenga RK, Chen Z. Insights into mitochondrial fatty acid synthesis from the structure of heterotetrameric 3-ketoacyl-ACP reductase/3R-hydroxyacyl-CoA dehydrogenase. Nat Commun. 2014 Sep 9;5:4805. doi: 10.1038/ncomms5805. PMID:25203508 doi:http://dx.doi.org/10.1038/ncomms5805
- ↑ Venkatesan R, Sah-Teli SK, Awoniyi LO, Jiang G, Prus P, Kastaniotis AJ, Hiltunen JK, Wierenga RK, Chen Z. Insights into mitochondrial fatty acid synthesis from the structure of heterotetrameric 3-ketoacyl-ACP reductase/3R-hydroxyacyl-CoA dehydrogenase. Nat Commun. 2014 Sep 9;5:4805. doi: 10.1038/ncomms5805. PMID:25203508 doi:http://dx.doi.org/10.1038/ncomms5805