6mjp

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='6mjp' size='340' side='right'caption='[[6mjp]], [[Resolution|resolution]] 2.85&Aring;' scene=''>
<StructureSection load='6mjp' size='340' side='right'caption='[[6mjp]], [[Resolution|resolution]] 2.85&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6mjp]] is a 5 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MJP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MJP FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6mjp]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillo_virgola_del_koch"_trevisan_1884 "bacillo virgola del koch" trevisan 1884]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MJP OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MJP FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AE3:2-(2-ETHOXYETHOXY)ETHANOL'>AE3</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=JU7:6-cyclohexylhexyl+beta-D-glucopyranoside'>JU7</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=MA4:CYCLOHEXYL-HEXYL-BETA-D-MALTOSIDE'>MA4</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AE3:2-(2-ETHOXYETHOXY)ETHANOL'>AE3</scene>, <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=JU7:6-cyclohexylhexyl+beta-D-glucopyranoside'>JU7</scene>, <scene name='pdbligand=LMT:DODECYL-BETA-D-MALTOSIDE'>LMT</scene>, <scene name='pdbligand=MA4:CYCLOHEXYL-HEXYL-BETA-D-MALTOSIDE'>MA4</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PG4:TETRAETHYLENE+GLYCOL'>PG4</scene></td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">lptB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=666 "Bacillo virgola del Koch" Trevisan 1884]), lptC ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=666 "Bacillo virgola del Koch" Trevisan 1884]), lptF ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=666 "Bacillo virgola del Koch" Trevisan 1884]), lptG ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=666 "Bacillo virgola del Koch" Trevisan 1884])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mjp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mjp OCA], [http://pdbe.org/6mjp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mjp RCSB], [http://www.ebi.ac.uk/pdbsum/6mjp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mjp ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mjp FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mjp OCA], [http://pdbe.org/6mjp PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mjp RCSB], [http://www.ebi.ac.uk/pdbsum/6mjp PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mjp ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/A0A085S5D1_VIBCL A0A085S5D1_VIBCL]] Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. Facilitates the transfer of LPS from the inner membrane to the periplasmic protein LptA. Could be a docking site for LptA.[HAMAP-Rule:MF_01915] Required for the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane.[PIRNR:PIRNR028513]
[[http://www.uniprot.org/uniprot/A0A085S5D1_VIBCL A0A085S5D1_VIBCL]] Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. Facilitates the transfer of LPS from the inner membrane to the periplasmic protein LptA. Could be a docking site for LptA.[HAMAP-Rule:MF_01915] Required for the translocation of lipopolysaccharide (LPS) from the inner membrane to the outer membrane.[PIRNR:PIRNR028513]
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Gram-negative bacteria are surrounded by an inner cytoplasmic membrane and by an outer membrane, which serves as a protective barrier to limit entry of many antibiotics. The distinctive properties of the outer membrane are due to the presence of lipopolysaccharide(1). This large glycolipid, which contains numerous sugars, is made in the cytoplasm; a complex of proteins forms a membrane-to-membrane bridge that mediates transport of lipopolysaccharide from the inner membrane to the cell surface(1). The inner-membrane components of the protein bridge comprise an ATP-binding cassette transporter that powers transport, but how this transporter ensures unidirectional lipopolysaccharide movement across the bridge to the outer membrane is unknown(2). Here we describe two crystal structures of a five-component inner-membrane complex that contains all the proteins required to extract lipopolysaccharide from the membrane and pass it to the protein bridge. Analysis of these structures, combined with biochemical and genetic experiments, identifies the path of lipopolysaccharide entry into the cavity of the transporter and up to the bridge. We also identify a protein gate that must open to allow movement of substrate from the cavity onto the bridge. Lipopolysaccharide entry into the cavity is ATP-independent, but ATP is required for lipopolysaccharide movement past the gate and onto the bridge. Our findings explain how the inner-membrane transport complex controls efficient unidirectional transport of lipopolysaccharide against its concentration gradient.
 +
 +
Structural basis of unidirectional export of lipopolysaccharide to the cell surface.,Owens TW, Taylor RJ, Pahil KS, Bertani BR, Ruiz N, Kruse AC, Kahne D Nature. 2019 Mar;567(7749):550-553. doi: 10.1038/s41586-019-1039-0. Epub 2019 Mar, 20. PMID:30894747<ref>PMID:30894747</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6mjp" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Bacillo virgola del koch trevisan 1884]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Kahne, D]]
[[Category: Kahne, D]]

Revision as of 08:20, 3 April 2019

LptB(E163Q)FGC from Vibrio cholerae

PDB ID 6mjp

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools