Sandbox Reserved 1544

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 15: Line 15:
MCADD is a disorder inherited genetically through an autosomal recessive trait, and it is caused by mutations in the medium-chain acyl- CoA dehydrogenase (ACADM) gene. The ACADM gene is located on chromosome 1p31. There are over 90 different ACADM gene mutations known so far, most of which are missense mutations.
MCADD is a disorder inherited genetically through an autosomal recessive trait, and it is caused by mutations in the medium-chain acyl- CoA dehydrogenase (ACADM) gene. The ACADM gene is located on chromosome 1p31. There are over 90 different ACADM gene mutations known so far, most of which are missense mutations.
The disorder can lead to symptoms such as a loss in appetite as well as vomiting and diarrhea. This can result in accumulated concentrations of acylcarnitine, which can be potentially toxic. People who are affected and not diagnosed are at a high risk of dying or experiencing permanent neurological damage during their first metabolic crisis. To prevent such events, immediate care should follow catabolic stress and fasting should be averted. Individuals living with MCADD are asymptomatic up until there is an increased demand for energy followed by a prolonged time of fasting. Newborn screening is now widely implemented through the use of liquid chromatography-tandem mass spectrometry.
The disorder can lead to symptoms such as a loss in appetite as well as vomiting and diarrhea. This can result in accumulated concentrations of acylcarnitine, which can be potentially toxic. People who are affected and not diagnosed are at a high risk of dying or experiencing permanent neurological damage during their first metabolic crisis. To prevent such events, immediate care should follow catabolic stress and fasting should be averted. Individuals living with MCADD are asymptomatic up until there is an increased demand for energy followed by a prolonged time of fasting. Newborn screening is now widely implemented through the use of liquid chromatography-tandem mass spectrometry.
 +
== Relevance ==
== Relevance ==

Revision as of 18:31, 8 April 2019

This Sandbox is Reserved from May 28 through July 01, 2019 for use in the course Advanced Biochemistry BCHM 4100 taught by Tom Gluick at the Georgia Gwinnett College. This reservation includes Sandbox Reserved 1544 through Sandbox Reserved 1555.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Structure

Acyl CoA Dehydrogenase

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools