User:Mark Macbeth/Sandbox7

From Proteopedia

< User:Mark Macbeth(Difference between revisions)
Jump to: navigation, search
Current revision (18:39, 23 April 2019) (edit) (undo)
 
Line 24: Line 24:
== Mechanism of Action==
== Mechanism of Action==
-
[[Image:LSD1Mechanism.png|700 px|right|thumb|Figure 3: Hydride transfer mechanism of LSD-1 active site via FAD cofactor.]]
+
[[Image:LSD_1_Chemdraw_Real.png|700 px|right|thumb|Figure 3: Hydride transfer mechanism of LSD-1 active site via FAD cofactor.]]
The mechanism of lysine demethylation is highly dependent on the presence of the <scene name='81/811089/Fadcofactor/4'>FAD cofactor</scene>. The FAD cofactor, positioned closely to the substrate lysine in the active site, acts as an oxidizing agent and initiates catalysis (Figure 3). A two-electron transfer occurs between the substrate lysine and FAD in the form of a [https://en.wikipedia.org/wiki/Hydride hydride]; the lysine is oxidized and the FAD is reduced <ref name="Stavropolous"/>. The FAD cofactor forms an anion and is stabilized by the positively charged <scene name='81/811088/Lys661/3'>Lys661</scene> positioned in the catalytic pocket of the active site <ref name="Stavropolous"/>. The oxidized lysine forms an aminium cation that is hydrolyzed into the carbinolamine intermediate <ref name="Stavropolous"/>. The carbinolamine intermediate readily decomposes into formaldehyde and the demethylated lysine substrate <ref name="Stavropolous"/>.
The mechanism of lysine demethylation is highly dependent on the presence of the <scene name='81/811089/Fadcofactor/4'>FAD cofactor</scene>. The FAD cofactor, positioned closely to the substrate lysine in the active site, acts as an oxidizing agent and initiates catalysis (Figure 3). A two-electron transfer occurs between the substrate lysine and FAD in the form of a [https://en.wikipedia.org/wiki/Hydride hydride]; the lysine is oxidized and the FAD is reduced <ref name="Stavropolous"/>. The FAD cofactor forms an anion and is stabilized by the positively charged <scene name='81/811088/Lys661/3'>Lys661</scene> positioned in the catalytic pocket of the active site <ref name="Stavropolous"/>. The oxidized lysine forms an aminium cation that is hydrolyzed into the carbinolamine intermediate <ref name="Stavropolous"/>. The carbinolamine intermediate readily decomposes into formaldehyde and the demethylated lysine substrate <ref name="Stavropolous"/>.

Current revision

LSD-1: Human lysine-specific demethylase 1

LSD-1 (PDB: 2H94) overall 3D structure: Tower domain (blue), SWIRM domain (yellow), Oxidase domain (red), and FAD cofactor (green).

Drag the structure with the mouse to rotate

Student Contributors

  • Nicholas Bantz
  • Cody Carley
  • Michael Thomas

Proteopedia Page Contributors and Editors (what is this?)

Mark Macbeth

Personal tools