User:Madeleine Wilson/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 27: Line 27:
===The N-terminal Domain===
===The N-terminal Domain===
[[Image:Clustal.png|200px|right|thumb|Figure 1. Clustal alignment of N-terminals]]
[[Image:Clustal.png|200px|right|thumb|Figure 1. Clustal alignment of N-terminals]]
-
The N-terminal domain of SET7 is notably far from the active site and has not been shown to be involved in enzyme activity or participate in substrate binding. <ref name="Kwon">PMID: 12514135</ref> With deletion of the N-terminal domain, studies have shown this modification does not affect SET7 activity. <ref name="Xiao" /> Though not essential for catalytic activity, the N-terminal domain by interact with other small molecules or proteins to act as an allosteric regulator region to the C-terminal domain. <ref name="Kwon" />
+
Though a highly conserved region, the N-terminal domain of SET7 is notably far from the active site and has not been shown to be involved in enzyme activity or participate in substrate binding. <ref name="Kwon">PMID: 12514135</ref> With deletion of the N-terminal domain, studies have shown this modification does not affect SET7 activity. <ref name="Xiao" /> Though not essential for catalytic activity, the N-terminal domain may interact with other small molecules or proteins to act as an allosteric regulator region to the C-terminal domain. <ref name="Kwon" />

Revision as of 18:23, 26 April 2019

Histone Lysine Methyltransferase: Gene Activator

Lysine Methyl Transferase

Drag the structure with the mouse to rotate

References

  1. DesJarlais R, Tummino PJ. Role of Histone-Modifying Enzymes and Their Complexes in Regulation of Chromatin Biology. Biochemistry. 2016 Mar 22;55(11):1584-99. doi: 10.1021/acs.biochem.5b01210. Epub , 2016 Jan 26. PMID:26745824 doi:http://dx.doi.org/10.1021/acs.biochem.5b01210
  2. 2.0 2.1 doi: https://dx.doi.org/10.1016/j.apsb.2013.04.007
  3. 3.0 3.1 Dong X, Weng Z. The correlation between histone modifications and gene expression. Epigenomics. 2013 Apr;5(2):113-6. doi: 10.2217/epi.13.13. PMID:23566087 doi:http://dx.doi.org/10.2217/epi.13.13
  4. 4.0 4.1 Del Rizzo PA, Trievel RC. Substrate and product specificities of SET domain methyltransferases. Epigenetics. 2011 Sep 1;6(9):1059-67. doi: 10.4161/epi.6.9.16069. Epub 2011 Sep, 1. PMID:21847010 doi:http://dx.doi.org/10.4161/epi.6.9.16069
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, Howell S, Taylor IA, Blackburn GM, Gamblin SJ. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature. 2003 Feb 6;421(6923):652-6. Epub 2003 Jan 22. PMID:12540855 doi:10.1038/nature01378
  6. 6.0 6.1 Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, Lee J, Cho Y. Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J. 2003 Jan 15;22(2):292-303. PMID:12514135 doi:http://dx.doi.org/10.1093/emboj/cdg025
  7. Schluckebier G, Kozak M, Bleimling N, Weinhold E, Saenger W. Differential binding of S-adenosylmethionine S-adenosylhomocysteine and Sinefungin to the adenine-specific DNA methyltransferase M.TaqI. J Mol Biol. 1997 Jan 10;265(1):56-67. PMID:8995524 doi:http://dx.doi.org/10.1006/jmbi.1996.0711
  8. Tamura R, Doi S, Nakashima A, Sasaki K, Maeda K, Ueno T, Masaki T. Inhibition of the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis. PLoS One. 2018 May 3;13(5):e0196844. doi: 10.1371/journal.pone.0196844., eCollection 2018. PMID:29723250 doi:http://dx.doi.org/10.1371/journal.pone.0196844

Student Contributors

Lauryn Padgett, Alexandra Pentala, Madeleine Wilson

Proteopedia Page Contributors and Editors (what is this?)

Madeleine Wilson

Personal tools