User:Eliška Koutná/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 14: Line 14:
In the case of infectious/iatrogenic diseases, pathogenic prion proteins enter the body alimentary via ingestion of affected neural tissues, or via infected materials and tissues such as during blood transfusions, corneal transplants or dura mater grafts. In this case, the exogenous PrPSc form would serve as a template to promote the conversion of PrP* and, due to its insolubility, make this exponential conversion process irreversible <ref name="cohen2" />.
In the case of infectious/iatrogenic diseases, pathogenic prion proteins enter the body alimentary via ingestion of affected neural tissues, or via infected materials and tissues such as during blood transfusions, corneal transplants or dura mater grafts. In this case, the exogenous PrPSc form would serve as a template to promote the conversion of PrP* and, due to its insolubility, make this exponential conversion process irreversible <ref name="cohen2" />.
=== Genetic cause ===
=== Genetic cause ===
-
Genetic, or inherited cause comprise the familial TSEs and comes from DNA mutations in the PRNP gene, which then produces mutant, unstable forms of PrPC with higher tendency of folding into the PrP* form. This further increases the chance of PrPSc forming <ref name="cohen" />. The mutations in PRNP are autosomal dominant, highly penetrant, and consist of missense mutations, insertions and deletions <ref name="sig" />. With higher probability of protein misfolding in the old age, they usually incite disease onset in the late decades of life and ultimately lead to accumulation of prion proteins and rapid development of neurodegenerative disease <ref>DOI 10.1016/j.ejmech.2016.08.006</ref>
+
Genetic, or inherited cause comprise the familial TSEs and comes from DNA mutations in the PRNP gene, which then produces mutant, unstable forms of PrPC with higher tendency of folding into the PrP* form. This further increases the chance of PrPSc forming <ref name="cohen" />. The mutations in PRNP are autosomal dominant, highly penetrant, and consist of missense mutations, insertions and deletions <ref name="sig" />. With higher probability of protein misfolding in the old age, they usually incite disease onset in the late decades of life and ultimately lead to accumulation of prion proteins and rapid development of neurodegenerative disease <ref name="kha">DOI 10.1016/j.ejmech.2016.08.006</ref>
=== Sporadic cause ===
=== Sporadic cause ===
Concerning sporadic form of prion disease, the concentration of PrPSc may eventually reach a threshold level upon which a positive feedback loop would stimulate the formation of PrPSc. It requires solely a rare molecular event of formation of the PrP*/PrP* complex, or a somatic cell mutation followed by the mechanism of the initiation of inherited disease. Once formed, the replication cycle is primed for subsequent conversion <ref name="cohen2" /> <ref name="cohen" />.
Concerning sporadic form of prion disease, the concentration of PrPSc may eventually reach a threshold level upon which a positive feedback loop would stimulate the formation of PrPSc. It requires solely a rare molecular event of formation of the PrP*/PrP* complex, or a somatic cell mutation followed by the mechanism of the initiation of inherited disease. Once formed, the replication cycle is primed for subsequent conversion <ref name="cohen2" /> <ref name="cohen" />.
Line 27: Line 27:
=== Creutzfeld-Jacob disease ===
=== Creutzfeld-Jacob disease ===
-
Creutzfeld-Jacob disease (CJD) is the most common human prion disease. It occurs in three distinct forms, based on the source of the disease: sporadic, acquired and inherited <ref>DOI 10.1016/bs.pmbts.2017.06.010</ref>. Sporadic form of CJD is denoted as sCJD and it predominantly affects middle aged and elderly. Its classical clinical symptoms are rapid cognitive decline, dementia, cerebellar ataxia and myoclonus terminating in an akinetic mute state (Mackenzie G, Will R, 2017). Due to a very rapid progress of the disease, mean survival of patients is merely six months and more than 90 % die within a year from onset of the first symptoms (Ladogana A et al., 2005). There are certain speculations about the cause of sCJD, e.g. stochastic protein folding or a somatic mutation in PRNP gene, but the true reasons remain unrevealed (Knight R, 2017).
+
Creutzfeld-Jacob disease (CJD) is the most common human prion disease. It occurs in three distinct forms, based on the source of the disease: sporadic, acquired and inherited <ref name="knight">DOI 10.1016/bs.pmbts.2017.06.010</ref>. Sporadic form of CJD is denoted as sCJD and it predominantly affects middle aged and elderly. Its classical clinical symptoms are rapid cognitive decline, dementia, cerebellar ataxia and myoclonus terminating in an akinetic mute state <ref>DOI 10.12688/f1000research.12681.1</ref>. Due to a very rapid progress of the disease, mean survival of patients is merely six months and more than 90 % die within a year from onset of the first symptoms <ref>DOI 10.1212/01.WNL.0000160117.56690.B2</ref>. There are certain speculations about the cause of sCJD, e.g. stochastic protein folding or a somatic mutation in PRNP gene, but the true reasons remain unrevealed <ref name="knight" />.
-
Acquired forms of CJD are caused by infection from exogenous source and consist of variant CJD (vCJD) and iatrogenic CJD (iCJD). Latter is caused by accidental transmission of the disease through medical and surgical procedures, mainly by cadaveric-derived human dura mater grafts, like in cases of corneal transplantation (Duffy P, 1974; Maddox RA, 2008) or by treatment with human growth hormone (hGH) originating from sCJD affected pituitary glands (Peden AH, 2007). Additionally, few cases caused by treatment with infected human gonadotropin were also identified (Cochius JI, 1992). Symptoms of iCJD are generally identical with those of sCJD. However, cases caused by infected hGH are more specific, i.e. progressive cerebellar ataxia and lower limb dysaesthesia with other features, including cognitive impairment.
+
Acquired forms of CJD are caused by infection from exogenous source and consist of variant CJD (vCJD) and iatrogenic CJD (iCJD). Latter is caused by accidental transmission of the disease through medical and surgical procedures, mainly by cadaveric-derived human dura mater grafts, like in cases of corneal transplantation <ref>DOI 10.1056/NEJM197403212901220</ref> <ref>DOI 10.1097/ICO.0b013e31816a628d</ref> or by treatment with human growth hormone (hGH) originating from sCJD affected pituitary glands <ref>DOI 10.1099/vir.0.81913-0</ref>. Additionally, few cases caused by treatment with infected human gonadotropin were also identified <ref>PMID 1469410</ref>. Symptoms of iCJD are generally identical with those of sCJD. However, cases caused by infected hGH are more specific, i.e. progressive cerebellar ataxia and lower limb dysaesthesia with other features, including cognitive impairment<ref>DOI 10.1093/brain/awv235</ref>.
-
 
+
The vCJD form is caused by infection from oral uptake of food contaminated with BSE.
== Diagnosis and treatment ==
== Diagnosis and treatment ==
 +
To this date, there are no known treatment approaches for prion diseases, therefore these remain 100% fatal. One approach might be increasing the stability of the natural PrPC protein, but the existing compounds (like quinacrine) have been proven far too toxic <ref name="kha" />.
 +
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.

Revision as of 16:49, 28 April 2019

Prions

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Imran M, Mahmood S. An overview of animal prion diseases. Virol J. 2011 Nov 1;8:493. doi: 10.1186/1743-422X-8-493. PMID:22044871 doi:http://dx.doi.org/10.1186/1743-422X-8-493
  2. Prusiner SB. Prion diseases and the BSE crisis. Science. 1997 Oct 10;278(5336):245-51. doi: 10.1126/science.278.5336.245. PMID:9323196 doi:http://dx.doi.org/10.1126/science.278.5336.245
  3. 3.0 3.1 3.2 3.3 Sigurdson CJ, Bartz JC, Glatzel M. Cellular and Molecular Mechanisms of Prion Disease. Annu Rev Pathol. 2019 Jan 24;14:497-516. doi:, 10.1146/annurev-pathmechdis-012418-013109. Epub 2018 Oct 24. PMID:30355150 doi:http://dx.doi.org/10.1146/annurev-pathmechdis-012418-013109
  4. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K. NMR structure of the mouse prion protein domain PrP(121-321). Nature. 1996 Jul 11;382(6587):180-2. PMID:8700211 doi:10.1038/382180a0
  5. doi: https://dx.doi.org/10.1073/pnas.97.1.145
  6. Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science. 2005 Jun 3;308(5727):1435-9. doi: 10.1126/science.1110837. PMID:15933194 doi:http://dx.doi.org/10.1126/science.1110837
  7. 7.0 7.1 7.2 7.3 Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, et al.. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962-6. PMID:7902575
  8. Wille H, Requena JR. The Structure of PrP(Sc) Prions. Pathogens. 2018 Feb 7;7(1). pii: pathogens7010020. doi: 10.3390/pathogens7010020. PMID:29414853 doi:http://dx.doi.org/10.3390/pathogens7010020
  9. 9.0 9.1 9.2 9.3 Cohen FE, Prusiner SB. Pathologic conformations of prion proteins. Annu Rev Biochem. 1998;67:793-819. doi: 10.1146/annurev.biochem.67.1.793. PMID:9759504 doi:http://dx.doi.org/10.1146/annurev.biochem.67.1.793
  10. 10.0 10.1 10.2 doi: https://dx.doi.org/10.1126/science.7909169
  11. Deleault NR, Lucassen RW, Supattapone S. RNA molecules stimulate prion protein conversion. Nature. 2003 Oct 16;425(6959):717-20. doi: 10.1038/nature01979. PMID:14562104 doi:http://dx.doi.org/10.1038/nature01979
  12. 12.0 12.1 Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem. 2016 Nov 29;124:1121-1141. doi: 10.1016/j.ejmech.2016.08.006., Epub 2016 Aug 6. PMID:27597727 doi:http://dx.doi.org/10.1016/j.ejmech.2016.08.006
  13. Aucouturier P, Carp RI, Carnaud C, Wisniewski T. Prion diseases and the immune system. Clin Immunol. 2000 Aug;96(2):79-85. doi: 10.1006/clim.2000.4875. PMID:10900153 doi:http://dx.doi.org/10.1006/clim.2000.4875
  14. Casalone C, Hope J. Atypical and classic bovine spongiform encephalopathy. Handb Clin Neurol. 2018;153:121-134. doi: 10.1016/B978-0-444-63945-5.00007-6. PMID:29887132 doi:http://dx.doi.org/10.1016/B978-0-444-63945-5.00007-6
  15. Konold T, Bone G, Ryder S, Hawkins SA, Courtin F, Berthelin-Baker C. Clinical findings in 78 suspected cases of bovine spongiform encephalopathy in Great Britain. Vet Rec. 2004 Nov 20;155(21):659-66. PMID:15581140
  16. doi: https://dx.doi.org/10.1111/j.1749-6632.1994.tb38911.x
  17. Espinosa JC, Morales M, Castilla J, Rogers M, Torres JM. Progression of prion infectivity in asymptomatic cattle after oral bovine spongiform encephalopathy challenge. J Gen Virol. 2007 Apr;88(Pt 4):1379-83. doi: 10.1099/vir.0.82647-0. PMID:17374785 doi:http://dx.doi.org/10.1099/vir.0.82647-0
  18. 18.0 18.1 Knight R. Infectious and Sporadic Prion Diseases. Prog Mol Biol Transl Sci. 2017;150:293-318. doi: 10.1016/bs.pmbts.2017.06.010., Epub 2017 Aug 14. PMID:28838665 doi:http://dx.doi.org/10.1016/bs.pmbts.2017.06.010
  19. Mackenzie G, Will R. Creutzfeldt-Jakob disease: recent developments. F1000Res. 2017 Nov 27;6:2053. doi: 10.12688/f1000research.12681.1. eCollection, 2017. PMID:29225787 doi:http://dx.doi.org/10.12688/f1000research.12681.1
  20. Ladogana A, Puopolo M, Croes EA, Budka H, Jarius C, Collins S, Klug GM, Sutcliffe T, Giulivi A, Alperovitch A, Delasnerie-Laupretre N, Brandel JP, Poser S, Kretzschmar H, Rietveld I, Mitrova E, Cuesta Jde P, Martinez-Martin P, Glatzel M, Aguzzi A, Knight R, Ward H, Pocchiari M, van Duijn CM, Will RG, Zerr I. Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology. 2005 May 10;64(9):1586-91. doi: 10.1212/01.WNL.0000160117.56690.B2. PMID:15883321 doi:http://dx.doi.org/10.1212/01.WNL.0000160117.56690.B2
  21. Neumann DA. Letter: Hepatitis with hindsight. N Engl J Med. 1974 Mar 21;290(12):692. doi: 10.1056/NEJM197403212901220. PMID:4591848 doi:http://dx.doi.org/10.1056/NEJM197403212901220
  22. Maddox RA, Belay ED, Curns AT, Zou WQ, Nowicki S, Lembach RG, Geschwind MD, Haman A, Shinozaki N, Nakamura Y, Borer MJ, Schonberger LB. Creutzfeldt-Jakob disease in recipients of corneal transplants. Cornea. 2008 Aug;27(7):851-4. doi: 10.1097/ICO.0b013e31816a628d. PMID:18650677 doi:http://dx.doi.org/10.1097/ICO.0b013e31816a628d
  23. Peden AH, Ritchie DL, Uddin HP, Dean AF, Schiller KA, Head MW, Ironside JW. Abnormal prion protein in the pituitary in sporadic and variant Creutzfeldt-Jakob disease. J Gen Virol. 2007 Mar;88(Pt 3):1068-72. doi: 10.1099/vir.0.81913-0. PMID:17325383 doi:http://dx.doi.org/10.1099/vir.0.81913-0
  24. Cochius JI, Hyman N, Esiri MM. Creutzfeldt-Jakob disease in a recipient of human pituitary-derived gonadotrophin: a second case. J Neurol Neurosurg Psychiatry. 1992 Nov;55(11):1094-5. PMID:1469410
  25. Rudge P, Jaunmuktane Z, Adlard P, Bjurstrom N, Caine D, Lowe J, Norsworthy P, Hummerich H, Druyeh R, Wadsworth JD, Brandner S, Hyare H, Mead S, Collinge J. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain. 2015 Nov;138(Pt 11):3386-99. doi: 10.1093/brain/awv235. Epub 2015 Aug 11. PMID:26268531 doi:http://dx.doi.org/10.1093/brain/awv235

Proteopedia Page Contributors and Editors (what is this?)

Eliška Koutná

Personal tools