5xnm

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==Structure of unstacked C2S2M2-type PSII-LHCII supercomplex from Pisum sativum==
==Structure of unstacked C2S2M2-type PSII-LHCII supercomplex from Pisum sativum==
-
<StructureSection load='5xnm' size='340' side='right' caption='[[5xnm]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
+
<StructureSection load='5xnm' size='340' side='right'caption='[[5xnm]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
<table><tr><td colspan='2'>[[5xnm]] is a 54 chain structure with sequence from [http://en.wikipedia.org/wiki/Pisum_sativum Pisum sativum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XNM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5XNM FirstGlance]. <br>
<table><tr><td colspan='2'>[[5xnm]] is a 54 chain structure with sequence from [http://en.wikipedia.org/wiki/Pisum_sativum Pisum sativum]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5XNM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5XNM FirstGlance]. <br>
Line 9: Line 9:
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/PSBD_PEA PSBD_PEA]] Photosystem II (PSII) is a light-driven water: plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex.[HAMAP-Rule:MF_01383] [[http://www.uniprot.org/uniprot/Q04918_PEA Q04918_PEA]] The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated.[RuleBase:RU363080] [[http://www.uniprot.org/uniprot/CB28_PEA CB28_PEA]] The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated.<ref>PMID:2174365</ref> May channel protons produced in the catalytic Mn center of water oxidation into the thylakoid lumen.<ref>PMID:2174365</ref> [[http://www.uniprot.org/uniprot/PSBZ_PEA PSBZ_PEA]] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. [[http://www.uniprot.org/uniprot/D5MAJ8_PEA D5MAJ8_PEA]] One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.[HAMAP-Rule:MF_00441] [[http://www.uniprot.org/uniprot/PSBO_PEA PSBO_PEA]] Stabilizes the manganese cluster which is the primary site of water splitting. [[http://www.uniprot.org/uniprot/PSBC_PEA PSBC_PEA]] One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01496] [[http://www.uniprot.org/uniprot/PSBJ_PEA PSBJ_PEA]] One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. [[http://www.uniprot.org/uniprot/PSBL_PEA PSBL_PEA]] One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. [[http://www.uniprot.org/uniprot/PSBM_PEA PSBM_PEA]] One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. [[http://www.uniprot.org/uniprot/PSBE_PEA PSBE_PEA]] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.[HAMAP-Rule:MF_00642] [[http://www.uniprot.org/uniprot/PSBA_PEA PSBA_PEA]] This is one of the two reaction center proteins of photosystem II. Photosystem II (PSII) is a light-driven water: plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors.[HAMAP-Rule:MF_01379] [[http://www.uniprot.org/uniprot/PSBH_PEA PSBH_PEA]] One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.[HAMAP-Rule:MF_00752] [[http://www.uniprot.org/uniprot/PSBT_PEA PSBT_PEA]] Seems to play a role in the dimerization of PSII. [[http://www.uniprot.org/uniprot/Q9XQR6_PEA Q9XQR6_PEA]] One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01495][RuleBase:RU004535][SAAS:SAAS00789984]
+
[[http://www.uniprot.org/uniprot/PSBD_PEA PSBD_PEA]] Photosystem II (PSII) is a light-driven water: plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors. D2 is needed for assembly of a stable PSII complex.[HAMAP-Rule:MF_01383] [[http://www.uniprot.org/uniprot/Q04918_PEA Q04918_PEA]] The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated.[RuleBase:RU363080] [[http://www.uniprot.org/uniprot/CB28_PEA CB28_PEA]] The light-harvesting complex (LHC) functions as a light receptor, it captures and delivers excitation energy to photosystems with which it is closely associated.<ref>PMID:2174365</ref> May channel protons produced in the catalytic Mn center of water oxidation into the thylakoid lumen.<ref>PMID:2174365</ref> [[http://www.uniprot.org/uniprot/PSBZ_PEA PSBZ_PEA]] Controls the interaction of photosystem II (PSII) cores with the light-harvesting antenna. [[http://www.uniprot.org/uniprot/PSBO_PEA PSBO_PEA]] Stabilizes the manganese cluster which is the primary site of water splitting. [[http://www.uniprot.org/uniprot/D5MAJ8_PEA D5MAJ8_PEA]] One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.[HAMAP-Rule:MF_00441] [[http://www.uniprot.org/uniprot/PSBC_PEA PSBC_PEA]] One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01496] [[http://www.uniprot.org/uniprot/PSBJ_PEA PSBJ_PEA]] One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. [[http://www.uniprot.org/uniprot/PSBL_PEA PSBL_PEA]] One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface and is required for correct PSII assembly and/or dimerization. [[http://www.uniprot.org/uniprot/PSBM_PEA PSBM_PEA]] One of the components of the core complex of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. This subunit is found at the monomer-monomer interface. [[http://www.uniprot.org/uniprot/PSBE_PEA PSBE_PEA]] This b-type cytochrome is tightly associated with the reaction center of photosystem II (PSII). PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.[HAMAP-Rule:MF_00642] [[http://www.uniprot.org/uniprot/PSBA_PEA PSBA_PEA]] This is one of the two reaction center proteins of photosystem II. Photosystem II (PSII) is a light-driven water: plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation. The D1/D2 (PsbA/PsbA) reaction center heterodimer binds P680, the primary electron donor of PSII as well as several subsequent electron acceptors.[HAMAP-Rule:MF_01379] [[http://www.uniprot.org/uniprot/PSBT_PEA PSBT_PEA]] Seems to play a role in the dimerization of PSII. [[http://www.uniprot.org/uniprot/PSBH_PEA PSBH_PEA]] One of the components of the core complex of photosystem II (PSII), required for its stability and/or assembly. PSII is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation. It consists of a core antenna complex that captures photons, and an electron transfer chain that converts photonic excitation into a charge separation.[HAMAP-Rule:MF_00752] [[http://www.uniprot.org/uniprot/Q9XQR6_PEA Q9XQR6_PEA]] One of the components of the core complex of photosystem II (PSII). It binds chlorophyll and helps catalyze the primary light-induced photochemical processes of PSII. PSII is a light-driven water:plastoquinone oxidoreductase, using light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation.[HAMAP-Rule:MF_01495][RuleBase:RU004535][SAAS:SAAS00789984]
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 19: Line 19:
</div>
</div>
<div class="pdbe-citations 5xnm" style="background-color:#fffaf0;"></div>
<div class="pdbe-citations 5xnm" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Photosystem II|Photosystem II]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Large Structures]]
[[Category: Photosystem II]]
[[Category: Photosystem II]]
[[Category: Pisum sativum]]
[[Category: Pisum sativum]]

Revision as of 09:02, 1 May 2019

Structure of unstacked C2S2M2-type PSII-LHCII supercomplex from Pisum sativum

PDB ID 5xnm

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools