Nerve agents and acetylcholinesterase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m
m
Line 24: Line 24:
== '''How it works''' ==
== '''How it works''' ==
-
Nerve agents are effective due to their interaction with acetylcholinesterase . This is significant because the body uses this enzyme to remove acetylcholine as it can be dangerous if it builds up in the body. Without the removal of acetylcholine, the muscles are continually contracting and spasming. Nerve agents work by interrupting communication between nerves and muscles or communication between nerves in the brain. <ref name="cotton">Cotton, S. (2018). Nerve Agents: What Are They and How Do They Work? American Scientist, 106(3), may/june 2018, 138. doi:10.1511/2018.106.3.138</ref> These agents work within minutes of a person being exposed to them and symptoms appear right away.
+
Nerve agents are effective due to their interaction with acetylcholinesterase. This is significant because the body uses this enzyme to remove acetylcholine as it can be dangerous if it builds up in the body. Without the removal of acetylcholine, the muscles are continually contracting and spasming. Nerve agents work by interrupting communication between nerves and muscles or communication between nerves in the brain. <ref name="cotton">Cotton, S. (2018). Nerve Agents: What Are They and How Do They Work? American Scientist, 106(3), may/june 2018, 138. doi:10.1511/2018.106.3.138</ref> These agents work within minutes of a person being exposed to them and symptoms appear right away.
-
When using X-ray crystallography to try and understand the structure of sarin, it was found that the isopropyl component becomes a closed conformation in order to shield the phosphorus atom so that it cannot be attacked . This was found in both human and nonhuman subjects and so it was determined that this was due to the preferred conformation being closed rather than being due to the crystal packing. <ref> Allgardsson, A., Berg, L., Akfur, C., Hörnberg, A., Worek, F., Linusson, A., & Ekström, F. J. (2016). Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Proceedings of the National Academy of Sciences, 113(20), 5516. doi:10.1073/pnas.1523362113</ref> This is significant as it gives researchers insight as to how a nerve agent protects itself from other chemicals in the body that may try to attack it.
+
When using X-ray crystallography to try and understand the structure of sarin, it was found that the isopropyl component becomes a closed conformation in order to shield the phosphorus atom so that it cannot be attacked . This was found in both human and nonhuman subjects, so it was determined that this was due to the preferred conformation being closed rather than being due to the crystal packing. <ref> Allgardsson, A., Berg, L., Akfur, C., Hörnberg, A., Worek, F., Linusson, A., & Ekström, F. J. (2016). Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Proceedings of the National Academy of Sciences, 113(20), 5516. doi:10.1073/pnas.1523362113</ref> This is significant as it gives researchers insight as to how a nerve agent protects itself from other chemicals in the body that may try to attack it.
== '''Binding to Acetylcholinesterase''' ==
== '''Binding to Acetylcholinesterase''' ==

Revision as of 07:08, 2 May 2019

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 Atchison, W. (2018, September 13). What is Novichok? A neurotoxicologist explains. Retrieved from http://theconversation.com/what-is-novichok-a-neurotoxicologist-explains-99736
  2. 2.0 2.1 Cotton, S. (2018). Nerve Agents: What Are They and How Do They Work? American Scientist, 106(3), may/june 2018, 138. doi:10.1511/2018.106.3.138
  3. 3.0 3.1 May, P. (2018, August). Novichok. Retrieved from http://www.chm.bris.ac.uk/motm/novichok/novichokh.htm
  4. 4.0 4.1 4.2 4.3 Gardiner, B. (n.d.). The Chemical Weapons Detectives. Popular Science, 290(5), winter 2018, 88.
  5. 5.0 5.1 Kloske, M., & Witkiewicz, Z. (2019). Novichoks – The A group of organophosphorus chemical warfare agents. Chemosphere, 221, 673. doi:10.1016/j.chemosphere.2019.01.054
  6. 6.0 6.1 6.2 6.3 Stone, R. (2018, September 25). How to defeat a nerve agent. Retrieved from https://www.sciencemag.org/news/2018/01/how-defeat-nerve-agent.
  7. 7.0 7.1 Xu, Y., Cheng, S., Sussman, J., Silman, I., & Jiang, H. (2017). Computational Studies on Acetylcholinesterases. Molecules, 22(8), 1324. doi:10.3390/molecules22081324
  8. Allgardsson, A., Berg, L., Akfur, C., Hörnberg, A., Worek, F., Linusson, A., & Ekström, F. J. (2016). Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Proceedings of the National Academy of Sciences, 113(20), 5516. doi:10.1073/pnas.1523362113
  9. Nerve Agents Guide. (n.d.). Retrieved from https://www.osha.gov/SLTC/emergencypreparedness/guides/nerve.html

Proteopedia Page Contributors and Editors (what is this?)

Melinda Luka, Jason Telford, Michal Harel

Personal tools