User:Christopher Shelby/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 11: Line 11:
NC facilitates the dimerization of gRNA. HIV-1 genomic information is packaged in the viral particle as a dimer. The palindromic sequence GCGCGC at the dimerization initiation site (DIS) (nt 240-280) initiates complimentary base pairing with another copy of gRNA and forms a kissing loop complex. This kissing loop complex is considered a loose dimer due to its low thermal stability. NC protein facilitates the transition from the low stability kissing loop complex to the stable extended dimer by promoting the refolding of the 5’-end regions via formation of cruciform intermediates (Dubois, Marquet, Paillart, & Bernacchi, 2018). NC makes up the c-terminal end of HIV-1 Gag protein, composed of three domains that is eventually cleaved to form matrix (MA), capsid (CA), and nucleocapsid (NC). Gag is responsible for formation of the final viral particle.
NC facilitates the dimerization of gRNA. HIV-1 genomic information is packaged in the viral particle as a dimer. The palindromic sequence GCGCGC at the dimerization initiation site (DIS) (nt 240-280) initiates complimentary base pairing with another copy of gRNA and forms a kissing loop complex. This kissing loop complex is considered a loose dimer due to its low thermal stability. NC protein facilitates the transition from the low stability kissing loop complex to the stable extended dimer by promoting the refolding of the 5’-end regions via formation of cruciform intermediates (Dubois, Marquet, Paillart, & Bernacchi, 2018). NC makes up the c-terminal end of HIV-1 Gag protein, composed of three domains that is eventually cleaved to form matrix (MA), capsid (CA), and nucleocapsid (NC). Gag is responsible for formation of the final viral particle.
-
The NC domain of Gag binds to gRNA with high specificity to the <scene name='81/814018/Psi_nc_complex/2'>psi element</scene>. In this way, gRNA serves as a scaffold for the oligomerization of Gag in viral particle formation. NC binding facilitated by the electrostatic interactions between the two zinc fingers and double stranded RNA. NC-gRNA binding is important for gRNA association with and growth of the viral particle as it migrates to the cell plasma membrane (PM). The NC domain initially binds to the gRNA, and then MA domain facilitates Gag migration (along with the bound gRNA) to the cell membrane. This is supported by the fact that NC mutant Gag (Gag with a leucine or isoleucine zipper motif instead of NC, but still able to oligomerize without RNA) localized and oligomerized at the PM but lacked gRNA specificity and would form empty virus like particles (VPLs) (Yang, et al., 2018). Gag proteins lacking the NC domain (∆NC-Gag) has greatly reduced Gag assembly at the PM. It has been shown that Gag binds to gRNA in clusters (dimers and trimers) and then subsequent Gag proteins multimerizes between these Gag clusters (Yang, et al., 2018). NC protein is important for this multimerization as ∆NC-Gag is unable to oligomerize.
+
The NC domain of Gag binds to gRNA with high specificity to the <scene name='81/814018/Psi_nc_complex/1'>psi element</scene>. In this way, gRNA serves as a scaffold for the oligomerization of Gag in viral particle formation. NC binding facilitated by the electrostatic interactions between the two zinc fingers and double stranded RNA. NC-gRNA binding is important for gRNA association with and growth of the viral particle as it migrates to the cell plasma membrane (PM). The NC domain initially binds to the gRNA, and then MA domain facilitates Gag migration (along with the bound gRNA) to the cell membrane. This is supported by the fact that NC mutant Gag (Gag with a leucine or isoleucine zipper motif instead of NC, but still able to oligomerize without RNA) localized and oligomerized at the PM but lacked gRNA specificity and would form empty virus like particles (VPLs) (Yang, et al., 2018). Gag proteins lacking the NC domain (∆NC-Gag) has greatly reduced Gag assembly at the PM. It has been shown that Gag binds to gRNA in clusters (dimers and trimers) and then subsequent Gag proteins multimerizes between these Gag clusters (Yang, et al., 2018). NC protein is important for this multimerization as ∆NC-Gag is unable to oligomerize.
NC plays an important gRNA reverse transcription. NC is known to destabilize hairpin and other secondary structures in the 5’ untranslated regions (5’ UTR). This helix unwinding prevents stalling of reverse transcriptase (RT) in vitro. With Selective 2’ Hydroxyl Acylation with Primer Extension (SHAPE), NC was has a high binding affinity for the five g rich ssRNA regions, a splice donor (SD) location and a Psi element site which are both adjacent to helices (Levin , Mithun, Mascarenhas, & Musier-Forsyth, 2010). NC was also shown to destabilize the first 185 nt locations including the primer binding site (PBS). This destabilization is important for the annealing of the tRNA primer. NC is also responsible for the initial association and placement of the primer during annealing, and just as with dimerization, NC catalyzes the nucleation of both the gRNA and the tRNA to facilitate optimal base paring between the two nucleic acid polymers. This was supported by the fact that in the presence of NC at the level of saturation (6 RNA nt:1 NC protein), tRNA/PBS annealing increased by a factor of fifty (Levin , Mithun, Mascarenhas, & Musier-Forsyth, 2010). An interesting note was that NC mutations lacking the zinc fingers were less effective than wt NC, while the same mutated NC exhibited more efficient nucleation.
NC plays an important gRNA reverse transcription. NC is known to destabilize hairpin and other secondary structures in the 5’ untranslated regions (5’ UTR). This helix unwinding prevents stalling of reverse transcriptase (RT) in vitro. With Selective 2’ Hydroxyl Acylation with Primer Extension (SHAPE), NC was has a high binding affinity for the five g rich ssRNA regions, a splice donor (SD) location and a Psi element site which are both adjacent to helices (Levin , Mithun, Mascarenhas, & Musier-Forsyth, 2010). NC was also shown to destabilize the first 185 nt locations including the primer binding site (PBS). This destabilization is important for the annealing of the tRNA primer. NC is also responsible for the initial association and placement of the primer during annealing, and just as with dimerization, NC catalyzes the nucleation of both the gRNA and the tRNA to facilitate optimal base paring between the two nucleic acid polymers. This was supported by the fact that in the presence of NC at the level of saturation (6 RNA nt:1 NC protein), tRNA/PBS annealing increased by a factor of fifty (Levin , Mithun, Mascarenhas, & Musier-Forsyth, 2010). An interesting note was that NC mutations lacking the zinc fingers were less effective than wt NC, while the same mutated NC exhibited more efficient nucleation.

Revision as of 19:49, 3 May 2019

Nucleocapsid Protein

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Christopher Shelby

Personal tools