| Structural highlights
5oeo is a 2 chain structure with sequence from Human. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | |
Gene: | CALM1, CALM, CAM, CAM1 (HUMAN), TRPV5, ECAC1 (HUMAN) |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
[CALM1_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of CPVT4. The disease is caused by mutations affecting the gene represented in this entry. Mutations in CALM1 are the cause of LQT14.
Function
[CALM1_HUMAN] Calmodulin mediates the control of a large number of enzymes, ion channels, aquaporins and other proteins through calcium-binding. Among the enzymes to be stimulated by the calmodulin-calcium complex are a number of protein kinases and phosphatases. Together with CCP110 and centrin, is involved in a genetic pathway that regulates the centrosome cycle and progression through cytokinesis (PubMed:16760425). Mediates calcium-dependent inactivation of CACNA1C (PubMed:26969752). Positively regulates calcium-activated potassium channel activity of KCNN2 (PubMed:27165696).[1] [2] [3] [4] [TRPV5_HUMAN] Constitutively active calcium selective cation channel thought to be involved in Ca(2+) reabsorption in kidney and intestine (PubMed:11549322, PubMed:18768590). Required for normal Ca(2+) reabsorption in the kidney distal convoluted tubules (By similarity). The channel is activated by low internal calcium level and the current exhibits an inward rectification (PubMed:11549322, PubMed:18768590). A Ca(2+)-dependent feedback regulation includes fast channel inactivation and slow current decay (By similarity). Heteromeric assembly with TRPV6 seems to modify channel properties. TRPV5-TRPV6 heteromultimeric concatemers exhibit voltage-dependent gating (By similarity).[UniProtKB:P69744][UniProtKB:Q9XSM3][5] [6]
Publication Abstract from PubMed
The transient receptor potential vanilloid channel subfamily member 5 (TRPV5) is a highly selective calcium ion channel predominately expressed in the kidney epithelium that plays an essential role in calcium reabsorption from renal infiltrate. In order to maintain Ca(2+) homeostasis, TRPV5 possesses a tightly regulated negative feedback mechanism, where the ubiquitous Ca(2+) binding protein calmodulin (CaM) directly binds to the intracellular TRPV5 C-terminus, thus regulating TRPV5. Here we report on the characterization of the TRPV5 C-terminal CaM binding site and its interaction with CaM at an atomistic level. We have solved the de novo solution structure of the TRPV5 C-terminus in complex with a CaM mutant, creating conditions that mimic the cellular basal Ca(2+) state. We demonstrate that under these conditions the TRPV5 C-terminus is exclusively bound to the CaM C-lobe only, while it confers conformational freedom to the CaM N-lobe. We also show that at elevated calcium levels, additional interactions between the TRPV5 C-terminus and CaM N-lobe occur, resulting in formation of a tight 1:1 complex, effectively making the N-lobe the calcium sensor. Together, these data are consistent with and support the novel model for Ca(2+)/CaM-dependent inactivation of TRPV channels as proposed by Bate and co-workers [ Bate , N. , et al. ( 2018 ) Biochemistry , ( 57), DOI: 10.1021/acs.biochem.7b01286 ].
The Structural Basis of Calcium-Dependent Inactivation of the Transient Receptor Potential Vanilloid 5 Channel.,Bokhovchuk FM, Bate N, Kovalevskaya NV, Goult BT, Spronk CAEM, Vuister GW Biochemistry. 2018 Apr 20. doi: 10.1021/acs.biochem.7b01287. PMID:29584409[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sanchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell. 2006 Aug;17(8):3423-34. Epub 2006 Jun 7. PMID:16760425 doi:10.1091/mbc.E06-04-0371
- ↑ Reichow SL, Clemens DM, Freites JA, Nemeth-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Allosteric mechanism of water-channel gating by Ca-calmodulin. Nat Struct Mol Biol. 2013 Jul 28. doi: 10.1038/nsmb.2630. PMID:23893133 doi:10.1038/nsmb.2630
- ↑ Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, Hwang HS, Johnson CN, Chazin WJ, Loporcaro CG, Shah M, Papez AL, Lau YR, Kanter R, Knollmann BC, Ackerman MJ. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G. Circ Cardiovasc Genet. 2016 Apr;9(2):136-146. doi:, 10.1161/CIRCGENETICS.115.001323. Epub 2016 Mar 11. PMID:26969752 doi:http://dx.doi.org/10.1161/CIRCGENETICS.115.001323
- ↑ Yu CC, Ko JS, Ai T, Tsai WC, Chen Z, Rubart M, Vatta M, Everett TH 4th, George AL Jr, Chen PS. Arrhythmogenic calmodulin mutations impede activation of small-conductance calcium-activated potassium current. Heart Rhythm. 2016 Aug;13(8):1716-23. doi: 10.1016/j.hrthm.2016.05.009. Epub 2016, May 7. PMID:27165696 doi:http://dx.doi.org/10.1016/j.hrthm.2016.05.009
- ↑ Peng JB, Brown EM, Hediger MA. Structural conservation of the genes encoding CaT1, CaT2, and related cation channels. Genomics. 2001 Aug;76(1-3):99-109. doi: 10.1006/geno.2001.6606. PMID:11549322 doi:http://dx.doi.org/10.1006/geno.2001.6606
- ↑ Zhang W, Na T, Peng JB. WNK3 positively regulates epithelial calcium channels TRPV5 and TRPV6 via a kinase-dependent pathway. Am J Physiol Renal Physiol. 2008 Nov;295(5):F1472-84. doi:, 10.1152/ajprenal.90229.2008. Epub 2008 Sep 3. PMID:18768590 doi:http://dx.doi.org/10.1152/ajprenal.90229.2008
- ↑ Bokhovchuk FM, Bate N, Kovalevskaya NV, Goult BT, Spronk CAEM, Vuister GW. The Structural Basis of Calcium-Dependent Inactivation of the Transient Receptor Potential Vanilloid 5 Channel. Biochemistry. 2018 Apr 20. doi: 10.1021/acs.biochem.7b01287. PMID:29584409 doi:http://dx.doi.org/10.1021/acs.biochem.7b01287
|