6mlq
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='6mlq' size='340' side='right'caption='[[6mlq]], [[Resolution|resolution]] 4.20Å' scene=''> | <StructureSection load='6mlq' size='340' side='right'caption='[[6mlq]], [[Resolution|resolution]] 4.20Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6mlq]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MLQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MLQ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6mlq]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human] and [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6MLQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6MLQ FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=TA1:TAXOL'>TA1</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=GDP:GUANOSINE-5-DIPHOSPHATE'>GDP</scene>, <scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=TA1:TAXOL'>TA1</scene></td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">KIF7, UNQ340/PRO539 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mlq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mlq OCA], [http://pdbe.org/6mlq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mlq RCSB], [http://www.ebi.ac.uk/pdbsum/6mlq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mlq ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6mlq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6mlq OCA], [http://pdbe.org/6mlq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6mlq RCSB], [http://www.ebi.ac.uk/pdbsum/6mlq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6mlq ProSAT]</span></td></tr> | ||
</table> | </table> | ||
Line 11: | Line 12: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/TBA1A_PIG TBA1A_PIG]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. [[http://www.uniprot.org/uniprot/KIF7_HUMAN KIF7_HUMAN]] Acts as both a negative and positive regulator of sonic hedgehog (Shh) pathway, acting downstream of SMO. Negatively regulates the pathway by preventing inappropriate activation of the transcriptional activator GLI2 in the absence of ligand. Positively regulates the pathway by preventing the processing of the transcription factor GLI3 into its repressor form. Required for efficient localization of GLI3 to cilia in response to Shh. Affects microtubular dynamics and acts as a ciliary motor.<ref>PMID:21633164</ref> [[http://www.uniprot.org/uniprot/TBB_PIG TBB_PIG]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. | [[http://www.uniprot.org/uniprot/TBA1A_PIG TBA1A_PIG]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. [[http://www.uniprot.org/uniprot/KIF7_HUMAN KIF7_HUMAN]] Acts as both a negative and positive regulator of sonic hedgehog (Shh) pathway, acting downstream of SMO. Negatively regulates the pathway by preventing inappropriate activation of the transcriptional activator GLI2 in the absence of ligand. Positively regulates the pathway by preventing the processing of the transcription factor GLI3 into its repressor form. Required for efficient localization of GLI3 to cilia in response to Shh. Affects microtubular dynamics and acts as a ciliary motor.<ref>PMID:21633164</ref> [[http://www.uniprot.org/uniprot/TBB_PIG TBB_PIG]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The correct localization of Hedgehog effectors to the tip of primary cilia is critical for proper signal transduction. The conserved non-motile kinesin Kif7 defines a "cilium-tip compartment" by localizing to the distal ends of axonemal microtubules. How Kif7 recognizes microtubule ends remains unknown. We find that Kif7 preferentially binds GTP-tubulin at microtubule ends over GDP-tubulin in the mature microtubule lattice, and ATP hydrolysis by Kif7 enhances this discrimination. Cryo-electron microscopy (cryo-EM) structures suggest that a rotated microtubule footprint and conformational changes in the ATP-binding pocket underlie Kif7's atypical microtubule-binding properties. Finally, Kif7 not only recognizes but also stabilizes a GTP-form of tubulin to promote its own microtubule-end localization. Thus, unlike the characteristic microtubule-regulated ATPase activity of kinesins, Kif7 modulates the tubulin mechanochemical cycle. We propose that the ubiquitous kinesin fold has been repurposed in Kif7 to facilitate organization of a spatially restricted platform for localization of Hedgehog effectors at the cilium tip. | ||
+ | |||
+ | Interplay between the Kinesin and Tubulin Mechanochemical Cycles Underlies Microtubule Tip Tracking by the Non-motile Ciliary Kinesin Kif7.,Jiang S, Mani N, Wilson-Kubalek EM, Ku PI, Milligan RA, Subramanian R Dev Cell. 2019 Apr 19. pii: S1534-5807(19)30241-2. doi:, 10.1016/j.devcel.2019.04.001. PMID:31031197<ref>PMID:31031197</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6mlq" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Human]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Sus scrofa]] | [[Category: Sus scrofa]] |
Revision as of 13:40, 10 May 2019
Cryo-EM structure of microtubule-bound Kif7 in the ADP state
|