6ivs
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/RSGI1_CLOTH RSGI1_CLOTH]] Anti-sigma factor for SigI1. Negatively regulates SigI1 activity through direct interaction (PubMed:20937888). Binding of the polysaccharide substrate to the extracellular C-terminal sensing domain of RsgI1 may induce a conformational change in its N-terminal cytoplasmic region, leading to the release and activation of SigI1 (Probable).<ref>PMID:20937888</ref> <ref>PMID:20937888</ref> | [[http://www.uniprot.org/uniprot/RSGI1_CLOTH RSGI1_CLOTH]] Anti-sigma factor for SigI1. Negatively regulates SigI1 activity through direct interaction (PubMed:20937888). Binding of the polysaccharide substrate to the extracellular C-terminal sensing domain of RsgI1 may induce a conformational change in its N-terminal cytoplasmic region, leading to the release and activation of SigI1 (Probable).<ref>PMID:20937888</ref> <ref>PMID:20937888</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The sigma70 family alternative sigmaI factors and their cognate anti-sigmaI factors are widespread in Clostridia and Bacilli and play a role in heat stress response, virulence, and polysaccharide sensing. Multiple sigmaI/anti-sigmaI factors exist in some lignocellulolytic clostridial species, specifically for regulation of components of a multienzyme complex, termed the cellulosome. The sigmaI and anti-sigmaI factors are unique, because the C-terminal domain of sigmaI (SigIC) and the N-terminal inhibitory domain of anti-sigmaI (RsgIN) lack homology to known proteins. Here, we report structure and interaction studies of a pair of sigmaI and anti-sigmaI factors, SigI1 and RsgI1, from the cellulosome-producing bacterium, Clostridium thermocellum. In contrast to other known anti-sigma factors that have N-terminal helical structures, RsgIN has a beta-barrel structure. Unlike other anti-sigma factors that bind both sigma2 and sigma4 domains of the sigma factors, RsgIN binds SigIC specifically. Structural analysis showed that SigIC contains a positively charged surface region that recognizes the promoter -35 region, and the synergistic interactions among multiple interfacial residues result in the specificity displayed by different sigmaI/anti-sigmaI pairs. We suggest that the sigmaI/anti-sigmaI factors represent a distinctive mode of sigma/anti-sigma complex formation, which provides the structural basis for understanding the molecular mechanism of the intricate sigmaI/anti-sigmaI system. | ||
+ | |||
+ | Alternative sigmaI/anti-sigmaI factors represent a unique form of bacterial sigma/anti-sigma complex.,Wei Z, Chen C, Liu YJ, Dong S, Li J, Qi K, Liu S, Ding X, Ortiz de Ora L, Munoz-Gutierrez I, Li Y, Yao H, Lamed R, Bayer EA, Cui Q, Feng Y Nucleic Acids Res. 2019 May 20. pii: 5490815. doi: 10.1093/nar/gkz355. PMID:31106374<ref>PMID:31106374</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6ivs" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 23:05, 5 June 2019
Solution structure of the N-terminal domain of the anti-sigma factor RsgI1 from Clostridium thermocellum
|