Dioxygenase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 14: Line 14:
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2,3-HPCD catalyzes the cleavage of the C2-C3 bond of homoprotocatechuate (HPCA) with the incorporation of both oxygen atoms derived from O<sub>2</sub> to form ring opened, 5-carboxymethyl-2-hydroxymuconic semialdehyde (5-CHMSA). Despite the significantly higher standard redox potential of Co(III/II) (1.92 V versus SHE) relative to that of the native metal Fe(II) (0.77 V), Co-HPCD was found to have more than twice the specific activity of Fe-HPCD under saturating O<sub>2</sub> conditions, making Co-HPCD a hyper-active enzyme. The presence of <scene name='Journal:JBIC:5/Cobalt_4_sites/3'>Co in the active sites of Co-HPCD</scene> is illustrated by the 4 strong anomalous difference peaks determined from the X-ray diffraction data set collected at the cobalt K-edge (Figure 4A, 1.6050 Å, 7.725 keV), which shows cobalt coordinated via <scene name='Journal:JBIC:5/Hpcd_active_site/5'>2-His-1-Carboxylate facial triad</scene>. The structural comparison of the high-resolution X-ray crystal structures of Fe-HPCD (1.70 Å, [[3ojt]]), Mn-HPCD (1.65 Å, [[3ojn]]), and Co-HCPD (1.72 Å, [[3ojj]]) shows <scene name='Journal:JBIC:5/Overlays/16'>no significant structural differences in the active site</scene> environment as indicated by the RMSD values of 0.10-0.14 Å for superposition of <scene name='Journal:JBIC:5/Overlays_15a/10'>all atoms within 15 angstroms of the metal center</scene>. In addition, the presence of Co in the active site of HPCD has <scene name='Journal:JBIC:5/Substrate_intro/6'>no structural consequences</scene> on either the <scene name='Journal:JBIC:5/Substrate_overlay/15'>mode of substrate binding</scene> or on the conformational integrity of the active site residues in<scene name='Journal:JBIC:5/Substrate_overlay/16'> the 1st or 2nd coordination sphere environment</scene>. The absence of any observable structural differences upon metal substitutions suggests that differential redox tuning of the metal centers in this dioxygenase is highly unlikely. Rather, the 2,3-HPCD enzyme can carry out the O<sub>2</sub> activation and oxidative ring-cleavage efficiently over a large range of metal redox potentials. The structural analysis supports the proposed mechanism described above in which the ability of the enzyme to activate molecular O<sub>2</sub> does not correlate with redox potential of the metal center. However, the current results also show that the rates of individual steps in the overall catalytic cycle can be effected by the metal present in the active site of HPCD, resulting in a earlier rate-limiting step for Co-HPCD compared to Fe-HPCD and Mn-HPCD.
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2,3-HPCD catalyzes the cleavage of the C2-C3 bond of homoprotocatechuate (HPCA) with the incorporation of both oxygen atoms derived from O<sub>2</sub> to form ring opened, 5-carboxymethyl-2-hydroxymuconic semialdehyde (5-CHMSA). Despite the significantly higher standard redox potential of Co(III/II) (1.92 V versus SHE) relative to that of the native metal Fe(II) (0.77 V), Co-HPCD was found to have more than twice the specific activity of Fe-HPCD under saturating O<sub>2</sub> conditions, making Co-HPCD a hyper-active enzyme. The presence of <scene name='Journal:JBIC:5/Cobalt_4_sites/3'>Co in the active sites of Co-HPCD</scene> is illustrated by the 4 strong anomalous difference peaks determined from the X-ray diffraction data set collected at the cobalt K-edge (Figure 4A, 1.6050 Å, 7.725 keV), which shows cobalt coordinated via <scene name='Journal:JBIC:5/Hpcd_active_site/5'>2-His-1-Carboxylate facial triad</scene>. The structural comparison of the high-resolution X-ray crystal structures of Fe-HPCD (1.70 Å, [[3ojt]]), Mn-HPCD (1.65 Å, [[3ojn]]), and Co-HCPD (1.72 Å, [[3ojj]]) shows <scene name='Journal:JBIC:5/Overlays/16'>no significant structural differences in the active site</scene> environment as indicated by the RMSD values of 0.10-0.14 Å for superposition of <scene name='Journal:JBIC:5/Overlays_15a/10'>all atoms within 15 angstroms of the metal center</scene>. In addition, the presence of Co in the active site of HPCD has <scene name='Journal:JBIC:5/Substrate_intro/6'>no structural consequences</scene> on either the <scene name='Journal:JBIC:5/Substrate_overlay/15'>mode of substrate binding</scene> or on the conformational integrity of the active site residues in<scene name='Journal:JBIC:5/Substrate_overlay/16'> the 1st or 2nd coordination sphere environment</scene>. The absence of any observable structural differences upon metal substitutions suggests that differential redox tuning of the metal centers in this dioxygenase is highly unlikely. Rather, the 2,3-HPCD enzyme can carry out the O<sub>2</sub> activation and oxidative ring-cleavage efficiently over a large range of metal redox potentials. The structural analysis supports the proposed mechanism described above in which the ability of the enzyme to activate molecular O<sub>2</sub> does not correlate with redox potential of the metal center. However, the current results also show that the rates of individual steps in the overall catalytic cycle can be effected by the metal present in the active site of HPCD, resulting in a earlier rate-limiting step for Co-HPCD compared to Fe-HPCD and Mn-HPCD.
 +
 +
==3D structures of dioxygenase==
 +
[[Dioxygenase 3D structures]]
 +
</StructureSection>
</StructureSection>
-
==3D structures of Protocatechuate 3,4-dioxygenase==
+
==3D structures of dioxygenase==
Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}}
Updated on {{REVISIONDAY2}}-{{MONTHNAME|{{REVISIONMONTH}}}}-{{REVISIONYEAR}}
Line 96: Line 100:
*α-ketoglutarate-dependent dioxygenase (Alkb)
*α-ketoglutarate-dependent dioxygenase (Alkb)
 +
**[[3khb]] – hAlkb (mutant) + Co+2 + oxoglutarate <br />
 +
**[[3i3q]] – hAlkb + Mn+2 + oxoglutarate <br />
 +
**[[3thp]] – hAlkb + Mn+2 + Zn+2 + oxoglutarate <br />
 +
**[[3tht]] – hAlkb (mutant) + Mn+2 + Zn+2 + oxoglutarate <br />
**[[3t4h]], [[3t4v]], [[3t3y]] – EcAlkb + Fe+3 + inhibitor – ''Escherichia coli''<br />
**[[3t4h]], [[3t4v]], [[3t3y]] – EcAlkb + Fe+3 + inhibitor – ''Escherichia coli''<br />
**[[2fdj]], [[2fdg]] – EcAlkb + Mn+2 + succinate <br />
**[[2fdj]], [[2fdg]] – EcAlkb + Mn+2 + succinate <br />
Line 103: Line 111:
**[[4zhn]] – EcAlkb (mutant) + Co+2 + oxoglutarate + trinucleotide<br />
**[[4zhn]] – EcAlkb (mutant) + Co+2 + oxoglutarate + trinucleotide<br />
**[[2fd8]] – EcAlkb (mutant) + Fe+2 + oxoglutarate <br />
**[[2fd8]] – EcAlkb (mutant) + Fe+2 + oxoglutarate <br />
-
**[[3khb]] – hAlkb (mutant) + Co+2 + oxoglutarate <br />
 
-
**[[3i3q]] – hAlkb + Mn+2 + oxoglutarate <br />
 
-
**[[3thp]] – hAlkb + Mn+2 + Zn+2 + oxoglutarate <br />
 
-
**[[3tht]] – hAlkb (mutant) + Mn+2 + Zn+2 + oxoglutarate <br />
 
-
**[[4idz]] – hFto + Ni+2 + oxalylglycine<br />
 
-
**[[4ie0]], [[4ie5]], [[4qho]] – hFto + Zn+2 + pyrimidine derivative<br />
 
-
**[[4ie4]], [[4ie6]] – hFto + Zn+2 + quinoline derivative<br />
 
-
**[[4ie7]] – hFto + Zn+2 + rhein<br />
 
-
**[[4qkn]] – hFto + Mn+2 + meclofenamic acid<br />
 
-
**[[4cxw]], [[4cxx]], [[4cxy]] – hFto + Ni+2 + inhibitor<br />
 
-
**[[5f8p]], [[5dab]] – hFto + Fe+2 + oxoglutarate + inhibitor<br />
 
-
**[[4zs2]], [[4zs3]] – hFto + Mn+2 + oxoglutarate + fluorescin<br />
 
-
**[[6eoz]] – EnFto + Ni+2 + cyclopeptin – ''Emericela nidulans''<br />
 
-
**[[5ybl]] – EnFto + Mn+2 + oxoglutarate <br />
 
-
**[[5y7t]], [[5y7r]] – EnFto + Fe+3 + oxoglutarate + cyclopeptin<br />
 
-
**[[5oa8]], [[5oa7]], [[5oa4]] – EnFto (mutant) + Ni+2 + oxoglutarate + cyclopeptin<br />
 
*''Alkb complex with DNA''
*''Alkb complex with DNA''
Line 150: Line 142:
**[[4qkb]], [[4qkd]] – hAlkbh7 residues 17-215 (mutant) + Mn + ketoglutarate <br />
**[[4qkb]], [[4qkd]] – hAlkbh7 residues 17-215 (mutant) + Mn + ketoglutarate <br />
**[[4qkf]] – hAlkbh7 residues 17-215 (mutant) + Mn + oxalylglycine <br />
**[[4qkf]] – hAlkbh7 residues 17-215 (mutant) + Mn + oxalylglycine <br />
 +
 +
* α-ketoglutarate-dependent dioxygenase (Fto)
 +
 +
**[[4idz]] – hFto + Ni+2 + oxalylglycine<br />
 +
**[[4ie0]], [[4ie5]], [[4qho]] – hFto + Zn+2 + pyrimidine derivative<br />
 +
**[[4ie4]], [[4ie6]] – hFto + Zn+2 + quinoline derivative<br />
 +
**[[4ie7]] – hFto + Zn+2 + rhein<br />
 +
**[[4qkn]] – hFto + Mn+2 + meclofenamic acid<br />
 +
**[[4cxw]], [[4cxx]], [[4cxy]] – hFto + Ni+2 + inhibitor<br />
 +
**[[6akw]] – hFto + oxoglutarate + inhibitor<br />
 +
**[[5f8p]], [[5dab]] – hFto + Fe+2 + oxoglutarate + inhibitor<br />
 +
**[[4zs2]], [[4zs3]] – hFto + Mn+2 + oxoglutarate + fluorescin<br />
 +
**[[5zmd]] – hFto (mutant) + Mn+2 + AMP derivative + DNA + oxalylglycine<br />
 +
**[[6eoz]] – EnFto + Ni+2 + cyclopeptin – Emericela nidulans<br />
 +
**[[5ybl]] – EnFto + Mn+2 + oxoglutarate <br />
 +
**[[5y7t]], [[5y7r]] – EnFto + Fe+3 + oxoglutarate + cyclopeptin<br />
 +
**[[5oa8]], [[5oa7]], [[5oa4]] – EnFto (mutant) + Ni+2 + oxoglutarate + cyclopeptin<br />
 +
 +
* α-ketoglutarate-dependent dioxygenase (ANDA)
 +
 +
**[[5zm2]] – EvANDA – ''Emericella variicolor''<br />
 +
**[[5zm4]], [[5zm3]] – EvANDA + Fe+3 + oxoglutarate + preandiloid<br />
*Leucoanthocyanidin dioxygenase (LACD)
*Leucoanthocyanidin dioxygenase (LACD)
Line 194: Line 208:
**[[2wl3]], [[2wl9]] - RoMPC + Fe+3 - ''Rhodococcus opacus'' <br />
**[[2wl3]], [[2wl9]] - RoMPC + Fe+3 - ''Rhodococcus opacus'' <br />
**[[3lm4]] – RoMPC + Fe+3 + H2O2<br />
**[[3lm4]] – RoMPC + Fe+3 + H2O2<br />
 +
**[[5zsz]] – DiMPC + Fe+3 - ''Diaphorobacter''<br />
 +
**[[5znh]] – DiMPC + Fe+3 + catechol derivative<br />
*Naphthalene 1,2-dioxygenase (NDO)
*Naphthalene 1,2-dioxygenase (NDO)
Line 268: Line 284:
*Tryptophan 2,3-dioxygenase (TDO)
*Tryptophan 2,3-dioxygenase (TDO)
 +
**[[4pw8]] - hTDO + Co+2 <br />
 +
**[[5tia]], [[5ti9]] – hTDO + heme + tryptophan <br />
 +
**[[6a4i]] – hTDO + heme + tryptophan + inhibitor<br />
**[[1yw0]] – XcTDO + Mg – ''Xanthomonas campestris''<br />
**[[1yw0]] – XcTDO + Mg – ''Xanthomonas campestris''<br />
**[[2nw7]] – XcTDO + heme <br />
**[[2nw7]] – XcTDO + heme <br />
Line 274: Line 293:
**[[2nw8]], [[2nw9]] – XcTDO + heme + Mn + tryptophan derivative<br />
**[[2nw8]], [[2nw9]] – XcTDO + heme + Mn + tryptophan derivative<br />
**[[2nox]] – CmTDO + heme – ''Cupriavidus metallidurans''<br />
**[[2nox]] – CmTDO + heme – ''Cupriavidus metallidurans''<br />
-
**[[4pw8]] - hTDO + Co+2 <br />
 
-
**[[5tia]], [[5ti9]] – hTDO + heme + tryptophan <br />
 
*Cysteine dioxygenase type I (CysDO)
*Cysteine dioxygenase type I (CysDO)
 +
**[[6bgm]], [[6bgf]], [[6e87]] – hCysDO + Fe+2 <br />
 +
**[[2ic1]], [[6n42]] – hCysDO + Fe+2 + cysteine<br />
 +
**[[6cdh]], [[6bpw]], [[6bpu]], [[6bpt]] – hCysDO + Fe+2 + Tyr derivative<br />
 +
**[[6cdn]], [[6bpx]], [[6bpv]], [[6bps]] – hCysDO + Fe+2 + cysteine + Tyr derivative<br />
 +
**[[6bpr]] – hCysDO + Fe+3 + cysteine + Tyr derivative + NO<br />
 +
**[[6n43]] – hCysDO + Fe+3 + cysteine + NO<br />
**[[2gh2]], [[4ieo]], [[4iep]], [[4ieq]], [[4ier]], [[4ies]], [[4iet]], [[4ieu]], [[4iev]], [[4iew]], [[4iex]], [[4iey]], [[4iez]], [[4jtn]], [[4jto]], [[4kwj]], [[4kwk]], [[4kwl]], [[2b5h]] – rCysDO + Fe+2 – rat <br />
**[[2gh2]], [[4ieo]], [[4iep]], [[4ieq]], [[4ier]], [[4ies]], [[4iet]], [[4ieu]], [[4iev]], [[4iew]], [[4iex]], [[4iey]], [[4iez]], [[4jtn]], [[4jto]], [[4kwj]], [[4kwk]], [[4kwl]], [[2b5h]] – rCysDO + Fe+2 – rat <br />
**[[4ubg]], [[4ubh]], [[5ezw]], [[5efu]], [[4ysf]], [[4yyo]] – rCysDO (mutant) + Fe+2 <br />
**[[4ubg]], [[4ubh]], [[5ezw]], [[5efu]], [[4ysf]], [[4yyo]] – rCysDO (mutant) + Fe+2 <br />
Line 291: Line 314:
**[[4xf3]] – rCysDO (mutant) + Fe+3 + inhibitor + cysteine<br />
**[[4xf3]] – rCysDO (mutant) + Fe+3 + inhibitor + cysteine<br />
**[[2q4s]], [[2atf]] – mCysDO + Ni+2 <br />
**[[2q4s]], [[2atf]] – mCysDO + Ni+2 <br />
-
**[[6bgm]], [[6bgf]] – hCysDO + Fe+2 <br />
 
-
**[[2ic1]] – hCysDO + Fe+2 + cysteine<br />
 
*4-hydroxyphenylpyruvate dioxygenase (HPPD)
*4-hydroxyphenylpyruvate dioxygenase (HPPD)
 +
**[[3isq]], [[5ec3]] – hHPPD + Co+2 <br />
 +
**[[1sqi]] – rHPPD + Fe+3 + inhibitor - rat<br />
**[[1cjx]] – HPPD + Fe+2 – ''Pseudomonas fluorescens''<br />
**[[1cjx]] – HPPD + Fe+2 – ''Pseudomonas fluorescens''<br />
**[[1t47]] – HPPD + Fe+2 – ''Streptomyces avermitilis''<br />
**[[1t47]] – HPPD + Fe+2 – ''Streptomyces avermitilis''<br />
**[[3zgj]] – HPPD + Co+2 + mandelic acid – ''Streptomyces coelicolor''<br />
**[[3zgj]] – HPPD + Co+2 + mandelic acid – ''Streptomyces coelicolor''<br />
**[[1sqd]], [[1sp9]] – AtHPPD + Fe+3 <br />
**[[1sqd]], [[1sp9]] – AtHPPD + Fe+3 <br />
-
**[[1sqi]] – HPPD + Fe+3 + inhibitor - rat<br />
+
**[[1tfz]], [[1tg5]], [[6j63]], [[5ywh]], [[5ywg]] - AtHPPD + Fe+3 + inhibitor <br />
-
**[[1tfz]], [[1tg5]], [[6j63]] – AtHPPD + Fe+3 + inhibitor <br />
+
**[[5xgk]] – AtHPPD + Fe+3 + hydroxyphenylpyruvate <br />
**[[6isd]] – AtHPPD + Fe+3 + sulcotrione <br />
**[[6isd]] – AtHPPD + Fe+3 + sulcotrione <br />
-
**[[3isq]], [[5ec3]] – hHPPD + Co+2 - human<br />
+
**[[5yy7]], [[5yy6]], [[5ywk]] – AtHPPD + Co+2 + benquitrione <br />
 +
**[[5ywi]] – AtHPPD (mutant) + Co+2 + NTBC <br />
**[[1sp8]] – HPPD + Fe+2 – corn<br />
**[[1sp8]] – HPPD + Fe+2 – corn<br />
**[[5hmq]] – PpHPPD + Mg+2 <br />
**[[5hmq]] – PpHPPD + Mg+2 <br />
Line 329: Line 353:
*3-hydroxyanthranilate 3,4-dioxygenase (HAD)
*3-hydroxyanthranilate 3,4-dioxygenase (HAD)
-
**[[4r52]] – CmHAD + Fe+2<br />
+
**[[2qnk]] – hHAD + Ni+2 <br />
 +
**[[5tkq]] – hHAD + Zn+2 <br />
 +
**[[5tk5]] – hHAD + Fe+3 <br />
 +
**[[3fe5]] – HAD + Fe+3 - bovine<br />
 +
**[[1zvf]] – HAD + Ni+2 - yeast<br />
 +
**[[5v28]], [[4r52]] – CmHAD + Fe+2 – ''Cupriavidus metallidurans''<br />
 +
**[[5v27]], [[5v26]], [[6d60]], [[6bvr]], [[6bvp]] – CmHAD (mutant) + Fe+2 <br />
**[[1yfu]], [[4hvq]], [[4hvr]], [[4i3p]], [[4l2n]] – CmHAD + Fe+3<br />
**[[1yfu]], [[4hvq]], [[4hvr]], [[4i3p]], [[4l2n]] – CmHAD + Fe+3<br />
**[[4hvo]] – CmHAD + Fe+3 + Cu+2<br />
**[[4hvo]] – CmHAD + Fe+3 + Cu+2<br />
Line 335: Line 365:
**[[1yfx]] – CmHAD + Fe+3 + NO + hydroxyanthranilate<br />
**[[1yfx]] – CmHAD + Fe+3 + NO + hydroxyanthranilate<br />
**[[1yfy]] – CmHAD + Fe+3 + hydroxyanthranilate<br />
**[[1yfy]] – CmHAD + Fe+3 + hydroxyanthranilate<br />
-
**[[1zvf]] – HAD + Ni+2 - yeast<br />
+
**[[6d62]], [[6d61]], [[6cd3]], [[6bvs]], [[6bvq]] – CmHAD (mutant) + Fe+2 + hydroxyanthranilate derivative<br />
-
**[[2qnk]] – hHAD + Ni+2 <br />
+
-
**[[5tkq]] – hHAD + Zn+2 <br />
+
-
**[[5tk5]] – hHAD + Fe+3 <br />
+
-
**[[3fe5]] – HAD + Fe+3 - bovine<br />
+
**[[4wzc]] – HAD + Fe+2 + enedioate derivative – ''Ralstonia metallidurans''<br />
**[[4wzc]] – HAD + Fe+2 + enedioate derivative – ''Ralstonia metallidurans''<br />
-
**[[5v28]] – CmHAD + Fe+2 – ''Cupriavidus metallidurans''<br />
 
-
**[[5v27]], [[5v26]] – CmHAD (mutant) + Fe+2 <br />
 
*Carbazole 1,9a-dioxygenase (CDO)
*Carbazole 1,9a-dioxygenase (CDO)
Line 415: Line 439:
**[[4qgl]], [[4qgm]] – BaKMTPD + Cd+2<br />
**[[4qgl]], [[4qgm]] – BaKMTPD + Cd+2<br />
-
* Indoleamine 2,3-dioxygenase (IAD)
+
* Indoleamine 2,3-dioxygenase 1 (IAD)
**[[6azu]] – hIAD + heme <br />
**[[6azu]] – hIAD + heme <br />
 +
**[[6e45]], [[6e44]] – hIAD 1 (mutant) + heme <br />
**[[5ek2]], [[5ek3]], [[5ek4]], [[4pk5]], [[5xe1]], [[5wn8]] – hIAD + heme + imidazole derivative<br />
**[[5ek2]], [[5ek3]], [[5ek4]], [[4pk5]], [[5xe1]], [[5wn8]] – hIAD + heme + imidazole derivative<br />
-
**[[4u72]], [[4u74]] – hIAD (mutant) + heme + imidazole derivative<br />
+
**[[4u72]], [[4u74]], [[6e42]], [[6e41]], [[6e40]] – hIAD (mutant) + heme + imidazole derivative<br />
**[[6f0a]] – hIAD + heme + imidazole derivative + Ala<br />
**[[6f0a]] – hIAD + heme + imidazole derivative + Ala<br />
**[[6azw]], [[6azv]] – hIAD + inhibitor<br />
**[[6azw]], [[6azv]] – hIAD + inhibitor<br />
-
**[[5etw]] – hIAD + heme + inhibitor<br />
+
**[[5etw]], [[6mq6]], [[6dpr]], [[6dpq]] – hIAD + heme + inhibitor<br />
-
**[[5wmu]] – hIAD + heme + CN + Trp<br />
+
**[[5wmu]], [[6e35]] – hIAD + heme + CN + Trp<br />
-
**[[5wmw]] – hIAD (mutant) + heme + CN + Trp<br />
+
**[[5wmw]], [[6cxv]], [[6cxu]] – hIAD (mutant) + heme + CN + Trp<br />
**[[5wmv]] – hIAD + heme + CN + indole derivative + Trp<br />
**[[5wmv]] – hIAD + heme + CN + indole derivative + Trp<br />
**[[5wmx]] – hIAD (mutant) + heme + CN + indole derivative + Trp<br />
**[[5wmx]] – hIAD (mutant) + heme + CN + indole derivative + Trp<br />
**[[5whr]] – hIAD + heme + pyrrolydine derivative <br />
**[[5whr]] – hIAD + heme + pyrrolydine derivative <br />
 +
**[[6e46]] – hIAD 1 + heme + Trp<br />
 +
**[[6e43]] – hIAD 1 (mutant) + inhibitor<br />
* Thymine dioxygenase (TD)
* Thymine dioxygenase (TD)
Line 446: Line 473:
**[[4wvz]] – PaThD (mutant) + Fe+2 <br />
**[[4wvz]] – PaThD (mutant) + Fe+2 <br />
 +
*FT_T dioxygenase (FTTD)
 +
 +
**[[6d3j]] – ShFTTD + Co+2 + oxoglutarate – ''Sphingobium herbicidovorans''<br />
 +
**[[6d3m]] – ShFTTD + Co+2 + oxoglutarate + quinoxalin<br />
 +
**[[6d3i]], [[6d3h]] – ShFTTD + Co+2 + oxoglutarate + phenoxy derivative<br />
}}
}}
<references/>
<references/>
[[Category:Topic Page]]
[[Category:Topic Page]]

Revision as of 09:11, 11 June 2019

Solved Crystal Structure of Hyperactive Catechol Dioxygenase

Drag the structure with the mouse to rotate

3D structures of dioxygenase

Updated on 11-June-2019

  1. Ichiyama K, Chen T, Wang X, Yan X, Kim BS, Tanaka S, Ndiaye-Lobry D, Deng Y, Zou Y, Zheng P, Tian Q, Aifantis I, Wei L, Dong C. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity. 2015 Apr 21;42(4):613-26. doi: 10.1016/j.immuni.2015.03.005. Epub 2015 , Apr 7. PMID:25862091 doi:http://dx.doi.org/10.1016/j.immuni.2015.03.005
  2. Fielding AJ, Kovaleva EG, Farquhar ER, Lipscomb JD, Que L Jr. A hyperactive cobalt-substituted extradiol-cleaving catechol dioxygenase. J Biol Inorg Chem. 2010 Dec 14. PMID:21153851 doi:10.1007/s00775-010-0732-0

Proteopedia Page Contributors and Editors (what is this?)

Michal Harel, Alexander Berchansky, Joel L. Sussman, Jaime Prilusky

Personal tools