|
|
Line 1: |
Line 1: |
- | {{Large structure}}
| + | |
| ==The re-refined crystal structure of the Haloarcula marismortui large ribosomal subunit at 2.4 Angstrom resolution: more complete structure of the L7/L12 and L1 stalk, L5 and LX proteins== | | ==The re-refined crystal structure of the Haloarcula marismortui large ribosomal subunit at 2.4 Angstrom resolution: more complete structure of the L7/L12 and L1 stalk, L5 and LX proteins== |
- | <StructureSection load='4v9f' size='340' side='right' caption='[[4v9f]], [[Resolution|resolution]] 2.40Å' scene=''> | + | <StructureSection load='4v9f' size='340' side='right'caption='[[4v9f]], [[Resolution|resolution]] 2.40Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4v9f]] is a 33 chain structure with sequence from [http://en.wikipedia.org/wiki/Haloarcula_marismortui Haloarcula marismortui]. This structure supersedes and combines the now removed PDB entries [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=4hub 4hub] and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=4i4m 4i4m]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4V9F OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4V9F FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4v9f]] is a 33 chain structure with sequence from [http://en.wikipedia.org/wiki/Haloarcula_marismortui Haloarcula marismortui]. This structure supersedes the now removed PDB entries [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=4hub 4hub] and [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=4i4m 4i4m]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4V9F OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4V9F FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> | | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACY:ACETIC+ACID'>ACY</scene>, <scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=1MA:6-HYDRO-1-METHYLADENOSINE-5-MONOPHOSPHATE'>1MA</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=UNK:UNKNOWN'>UNK</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene></td></tr> | | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=1MA:6-HYDRO-1-METHYLADENOSINE-5-MONOPHOSPHATE'>1MA</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=OMU:O2-METHYLURIDINE+5-MONOPHOSPHATE'>OMU</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=UNK:UNKNOWN'>UNK</scene>, <scene name='pdbligand=UR3:3-METHYLURIDINE-5-MONOPHOSHATE'>UR3</scene></td></tr> |
Line 9: |
Line 9: |
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4v9f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v9f OCA], [http://pdbe.org/4v9f PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4v9f RCSB], [http://www.ebi.ac.uk/pdbsum/4v9f PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4v9f ProSAT]</span></td></tr> | | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4v9f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4v9f OCA], [http://pdbe.org/4v9f PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4v9f RCSB], [http://www.ebi.ac.uk/pdbsum/4v9f PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4v9f ProSAT]</span></td></tr> |
| </table> | | </table> |
- | {{Large structure}} | |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/RL11_HALMA RL11_HALMA]] This protein binds directly to 23S ribosomal RNA (By similarity).[HAMAP-Rule:MF_00736_A] [[http://www.uniprot.org/uniprot/RL23_HALMA RL23_HALMA]] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [[http://www.uniprot.org/uniprot/RL6_HALMA RL6_HALMA]] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [[http://www.uniprot.org/uniprot/RL31_HALMA RL31_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [[http://www.uniprot.org/uniprot/RL18E_HALMA RL18E_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [[http://www.uniprot.org/uniprot/RL24_HALMA RL24_HALMA]] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [[http://www.uniprot.org/uniprot/RL19E_HALMA RL19E_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [[http://www.uniprot.org/uniprot/RL39_HALMA RL39_HALMA]] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [[http://www.uniprot.org/uniprot/RL24E_HALMA RL24E_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [[http://www.uniprot.org/uniprot/RL14_HALMA RL14_HALMA]] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [[http://www.uniprot.org/uniprot/RL18_HALMA RL18_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [[http://www.uniprot.org/uniprot/RL37_HALMA RL37_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [[http://www.uniprot.org/uniprot/RL5_HALMA RL5_HALMA]] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [[http://www.uniprot.org/uniprot/RL32_HALMA RL32_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [[http://www.uniprot.org/uniprot/RL30_HALMA RL30_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [[http://www.uniprot.org/uniprot/RL37A_HALMA RL37A_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00327] [[http://www.uniprot.org/uniprot/RL2_HALMA RL2_HALMA]] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [[http://www.uniprot.org/uniprot/RLA0_HALMA RLA0_HALMA]] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [[http://www.uniprot.org/uniprot/RL13_HALMA RL13_HALMA]] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [[http://www.uniprot.org/uniprot/RL15_HALMA RL15_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [[http://www.uniprot.org/uniprot/RL22_HALMA RL22_HALMA]] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [[http://www.uniprot.org/uniprot/RL7A_HALMA RL7A_HALMA]] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [[http://www.uniprot.org/uniprot/RL3_HALMA RL3_HALMA]] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [[http://www.uniprot.org/uniprot/RL29_HALMA RL29_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [[http://www.uniprot.org/uniprot/RL10_HALMA RL10_HALMA]] This is 1 of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Modeling places the A and P site tRNAs in close proximity to this protein.[HAMAP-Rule:MF_00448] [[http://www.uniprot.org/uniprot/RL21_HALMA RL21_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [[http://www.uniprot.org/uniprot/RL44E_HALMA RL44E_HALMA]] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [[http://www.uniprot.org/uniprot/RL4_HALMA RL4_HALMA]] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A]
| + | [[http://www.uniprot.org/uniprot/RL23_HALMA RL23_HALMA]] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [[http://www.uniprot.org/uniprot/RL6_HALMA RL6_HALMA]] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [[http://www.uniprot.org/uniprot/RL31_HALMA RL31_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [[http://www.uniprot.org/uniprot/RL18E_HALMA RL18E_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [[http://www.uniprot.org/uniprot/RL19E_HALMA RL19E_HALMA]] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [[http://www.uniprot.org/uniprot/RL39_HALMA RL39_HALMA]] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [[http://www.uniprot.org/uniprot/RL18_HALMA RL18_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [[http://www.uniprot.org/uniprot/RL32_HALMA RL32_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [[http://www.uniprot.org/uniprot/RL30_HALMA RL30_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [[http://www.uniprot.org/uniprot/RL37A_HALMA RL37A_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00327] [[http://www.uniprot.org/uniprot/RL22_HALMA RL22_HALMA]] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [[http://www.uniprot.org/uniprot/RL15_HALMA RL15_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [[http://www.uniprot.org/uniprot/RL29_HALMA RL29_HALMA]] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [[http://www.uniprot.org/uniprot/RL10_HALMA RL10_HALMA]] This is 1 of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Modeling places the A and P site tRNAs in close proximity to this protein.[HAMAP-Rule:MF_00448] [[http://www.uniprot.org/uniprot/RL44E_HALMA RL44E_HALMA]] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [[http://www.uniprot.org/uniprot/RL11_HALMA RL11_HALMA]] This protein binds directly to 23S ribosomal RNA (By similarity).[HAMAP-Rule:MF_00736_A] [[http://www.uniprot.org/uniprot/RL24_HALMA RL24_HALMA]] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [[http://www.uniprot.org/uniprot/RL14_HALMA RL14_HALMA]] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [[http://www.uniprot.org/uniprot/RL24E_HALMA RL24E_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [[http://www.uniprot.org/uniprot/RL37_HALMA RL37_HALMA]] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [[http://www.uniprot.org/uniprot/RL5_HALMA RL5_HALMA]] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [[http://www.uniprot.org/uniprot/RL2_HALMA RL2_HALMA]] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [[http://www.uniprot.org/uniprot/RLA0_HALMA RLA0_HALMA]] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [[http://www.uniprot.org/uniprot/RL13_HALMA RL13_HALMA]] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [[http://www.uniprot.org/uniprot/RL7A_HALMA RL7A_HALMA]] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [[http://www.uniprot.org/uniprot/RL3_HALMA RL3_HALMA]] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [[http://www.uniprot.org/uniprot/RL21_HALMA RL21_HALMA]] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [[http://www.uniprot.org/uniprot/RL4_HALMA RL4_HALMA]] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 22: |
| | | |
| ==See Also== | | ==See Also== |
| + | *[[Large Ribosomal Subunit of Haloarcula|Large Ribosomal Subunit of Haloarcula]] |
| *[[Ribosome 3D structures|Ribosome 3D structures]] | | *[[Ribosome 3D structures|Ribosome 3D structures]] |
| == References == | | == References == |
Line 29: |
Line 29: |
| </StructureSection> | | </StructureSection> |
| [[Category: Haloarcula marismortui]] | | [[Category: Haloarcula marismortui]] |
| + | [[Category: Large Structures]] |
| [[Category: Gabdulkhakov, A]] | | [[Category: Gabdulkhakov, A]] |
| [[Category: 50s ribosomal subunit]] | | [[Category: 50s ribosomal subunit]] |
| Structural highlights
4v9f is a 33 chain structure with sequence from Haloarcula marismortui. This structure supersedes the now removed PDB entries 4hub and 4i4m. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , , , |
NonStd Res: | , , , , , |
Related: | 1ffk, 3cc2, 3jsy, 2qa4 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[RL23_HALMA] Binds to a specific region on the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01369] [RL6_HALMA] This protein binds to the 23S rRNA, and is important in its secondary structure. It is located near the subunit interface in the base of the L7/L12 stalk, and near the tRNA binding site of the peptidyltransferase center.[HAMAP-Rule:MF_01365] [RL31_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00410] [RL18E_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain II) to which it binds.[HAMAP-Rule:MF_00329] [RL19E_HALMA] Binds to the 23S rRNA. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01475] [RL39_HALMA] Binds to the 23S rRNA. Forms part of the polypeptide exit tunnel.[HAMAP-Rule:MF_00629] [RL18_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, where it forms part of the central protuberance and stabilizes the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01337_A] [RL32_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00810] [RL30_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_01371] [RL37A_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00327] [RL22_HALMA] This protein binds specifically to 23S rRNA. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).[HAMAP-Rule:MF_01331] Contacts all 6 domains of the 23S rRNA, helping stabilize their relative orientation. An extended beta-hairpin in the C-terminus forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L4, while most of the rest of the protein is located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01331] [RL15_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_01341_A] [RL29_HALMA] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_00374] [RL10_HALMA] This is 1 of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Modeling places the A and P site tRNAs in close proximity to this protein.[HAMAP-Rule:MF_00448] [RL44E_HALMA] Binds to the 23S rRNA. Binds deacetylated tRNA in the E site; when the tRNA binds a stretch of 7 amino acids are displaced to allow binding.[HAMAP-Rule:MF_01476] [RL11_HALMA] This protein binds directly to 23S ribosomal RNA (By similarity).[HAMAP-Rule:MF_00736_A] [RL24_HALMA] One of two assembly initiator proteins, it binds directly to the 5'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01326_A] Stabilizes the tertiary rRNA structure within the 23S rRNA domain (domain I) to which it binds. Located at the polypeptide exit tunnel on the outside of the subunit.[HAMAP-Rule:MF_01326_A] [RL14_HALMA] Forms part of two intersubunit bridges in the 70S ribosome (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01367] [RL24E_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00773] [RL37_HALMA] Binds to the 23S rRNA.[HAMAP-Rule:MF_00547] [RL5_HALMA] This is 1 of 5 proteins that mediates the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains. Forms part of the central protuberance. Modeling places the A and P site tRNAs in close proximity to this protein; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs. In the 70S ribosome it is thought to contact protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement.[HAMAP-Rule:MF_01333_A] [RL2_HALMA] One of the primary rRNA binding proteins. Required for association of the 30S and 50S subunits to form the 70S ribosome, for tRNA binding and peptide bond formation. It has been suggested to have peptidyltransferase activity; this is somewhat controversial. Makes several contacts with the 16S rRNA in the 70S ribosome (By similarity).[HAMAP-Rule:MF_01320_A] [RLA0_HALMA] Ribosomal protein L10e is the functional equivalent of E.coli protein L10.[HAMAP-Rule:MF_00280] [RL13_HALMA] This protein is one of the early assembly proteins of the 50S ribosomal subunit (By similarity). Binds to 23S rRNA.[HAMAP-Rule:MF_01366] [RL7A_HALMA] Multifunctional RNA-binding protein that recognizes the K-turn motif in ribosomal RNA, box H/ACA and box C/D sRNAs (By similarity).[HAMAP-Rule:MF_00326] [RL3_HALMA] One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit (By similarity).[HAMAP-Rule:MF_01325_A] [RL21_HALMA] This is one of 5 proteins that mediate the attachment of the 5S rRNA onto the large ribosomal subunit, stabilizing the orientation of adjacent RNA domains.[HAMAP-Rule:MF_00369] [RL4_HALMA] One of the primary rRNA binding proteins, this protein initially binds near the 5'-end of the 23S rRNA. It is important during the early stages of 50S assembly (By similarity).[HAMAP-Rule:MF_01328_A] Makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit.[HAMAP-Rule:MF_01328_A] Forms part of the polypeptide exit tunnel, in which it helps forms a bend with protein L22. Contacts the macrolide antibiotic spiramycin in the polypeptide exit tunnel.[HAMAP-Rule:MF_01328_A]
Publication Abstract from PubMed
The large ribosomal subunit catalyzes peptide bond formation and binds initiation, termination, and elongation factors. We have determined the crystal structure of the large ribosomal subunit from Haloarcula marismortui at 2.4 angstrom resolution, and it includes 2833 of the subunit's 3045 nucleotides and 27 of its 31 proteins. The domains of its RNAs all have irregular shapes and fit together in the ribosome like the pieces of a three-dimensional jigsaw puzzle to form a large, monolithic structure. Proteins are abundant everywhere on its surface except in the active site where peptide bond formation occurs and where it contacts the small subunit. Most of the proteins stabilize the structure by interacting with several RNA domains, often using idiosyncratically folded extensions that reach into the subunit's interior.
The complete atomic structure of the large ribosomal subunit at 2.4 A resolution.,Ban N, Nissen P, Hansen J, Moore PB, Steitz TA Science. 2000 Aug 11;289(5481):905-20. PMID:10937989[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905-20. PMID:10937989
|