| Structural highlights
Disease
[SUFU_HUMAN] Defects in SUFU are a cause of medulloblastoma (MDB) [MIM:155255]. MDB is a malignant, invasive embryonal tumor of the cerebellum with a preferential manifestation in children. Defects in SUFU play a role in predisposition to desmoplastic MDB. These tumors make up about 20 to 30% of medulloblastomas, have a more nodular architecture than 'classical' medulloblastoma, and may have a better prognosis.
Function
[SUFU_HUMAN] Negative regulator in the hedgehog signaling pathway. Down-regulates GLI1-mediated transactivation of target genes. Part of a corepressor complex that acts on DNA-bound GLI1. May also act by linking GLI1 to BTRC and thereby targeting GLI1 to degradation by the proteasome. Sequesters GLI1, GLI2 and GLI3 in the cytoplasm, this effect is overcome by binding of STK36 to both SUFU and a GLI protein. Negative regulator of beta-catenin signaling. Regulates the formation of either the repressor form (GLI3R) or the activator form (GLI3A) of the full length form of GLI3 (GLI3FL). GLI3FL is complexed with SUFU in the cytoplasm and is maintained in a neutral state. Without the Hh signal, the SUFU-GLI3 complex is recruited to cilia, leading to the efficient processing of GLI3FL into GLI3R. When Hh signaling is initiated, SUFU dissociates from GLI3FL and the latter translocates to the nucleus, where it is phosphorylated, destabilized, and converted to a transcriptional activator (GLI3A).[1] [2] [3] [4] [5]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The Hedgehog pathway drives proliferation and differentiation by activating the Gli/Ci family of zinc finger transcription factors. Gli/Ci proteins form Hedgehog signaling complexes with other signaling components, including the kinesin-like protein Costal-2, the serine-threonine kinase Fused, and Suppressor of Fused [Su(fu)]. In these complexes Gli/Ci proteins are regulated by cytoplasmic sequestration, phosphorylation, and proteolysis. Here we characterize structural and functional determinants of Su(fu) required for Gli regulation and show that Su(fu) contains at least two distinct domains: a highly conserved carboxy-terminal region required for binding to the amino-terminal ends of the Gli proteins and a unique amino-terminal domain that binds the carboxy-terminal tail of Gli1. While each domain is capable of binding to different Gli1 regions independently, interactions between Su(fu) and Gli1 at both sites are required for cytoplasmic tethering and repression of Gli1. Furthermore, we have solved the crystal structure of the amino-terminal domain of human Su(fu)(27-268) at 2.65 A resolution. This domain forms a concave pocket with a prominent acidic patch. Mutation at Asp(159) in the acidic patch disrupts Gli1 tethering and repression while not strongly disrupting binding, indicating that the amino-terminal domain of Su(fu) likely impacts Gli binding through a mechanism distinct from that for tethering and repression. These studies provide a structural basis for understanding the function of Su(fu).
Suppressor of fused regulates Gli activity through a dual binding mechanism.,Merchant M, Vajdos FF, Ultsch M, Maun HR, Wendt U, Cannon J, Desmarais W, Lazarus RA, de Vos AM, de Sauvage FJ Mol Cell Biol. 2004 Oct;24(19):8627-41. PMID:15367681[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Stone DM, Murone M, Luoh S, Ye W, Armanini MP, Gurney A, Phillips H, Brush J, Goddard A, de Sauvage FJ, Rosenthal A. Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci. 1999 Dec;112 ( Pt 23):4437-48. PMID:10564661
- ↑ Kogerman P, Grimm T, Kogerman L, Krause D, Unden AB, Sandstedt B, Toftgard R, Zaphiropoulos PG. Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol. 1999 Sep;1(5):312-9. PMID:10559945 doi:10.1038/13031
- ↑ Taylor MD, Liu L, Raffel C, Hui CC, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer SW, Dura WT, Wainwright B, Squire JA, Rutka JT, Hogg D. Mutations in SUFU predispose to medulloblastoma. Nat Genet. 2002 Jul;31(3):306-10. Epub 2002 Jun 17. PMID:12068298 doi:10.1038/ng916
- ↑ Murone M, Luoh SM, Stone D, Li W, Gurney A, Armanini M, Grey C, Rosenthal A, de Sauvage FJ. Gli regulation by the opposing activities of fused and suppressor of fused. Nat Cell Biol. 2000 May;2(5):310-2. PMID:10806483 doi:10.1038/35010610
- ↑ Chi S, Xie G, Liu H, Chen K, Zhang X, Li C, Xie J. Rab23 negatively regulates Gli1 transcriptional factor in a Su(Fu)-dependent manner. Cell Signal. 2012 Jun;24(6):1222-8. doi: 10.1016/j.cellsig.2012.02.004. Epub 2012, Feb 18. PMID:22365972 doi:10.1016/j.cellsig.2012.02.004
- ↑ Merchant M, Vajdos FF, Ultsch M, Maun HR, Wendt U, Cannon J, Desmarais W, Lazarus RA, de Vos AM, de Sauvage FJ. Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol. 2004 Oct;24(19):8627-41. PMID:15367681 doi:10.1128/MCB.24.19.8627-8641.2004
|