4mlb

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
MATE (multidrug and toxic compound extrusion) transporter proteins mediate metabolite transport in plants and multidrug resistance in bacteria and mammals. MATE transporter NorM from Vibrio cholerae is an antiporter that is driven by Na+ gradient to extrude the substrates. To understand the molecular mechanism of Na+-substrate exchange, molecular dynamics simulation was performed to study conformational changes of both wild-type and mutant NorM with and without cation bindings. Our results show that NorM is able to bind two Na(+) ions simultaneously, one to each of the carboxylic groups of E255 and D371 in the binding pocket. Furthermore, this di-Na(+) binding state is likely more efficient for conformational changes of NorM_VC toward the inward-facing conformation than single-Na(+) binding state. The observation of two Na(+) binding sites of NorM_VC is consistent with the previous study that two sites for ion binding (denoted as Na1/Na2 sites) are found in the transporter LeuT and BetP, another two secondary transporters. Taken together, our findings shed light on the structure rearrangements of NorM on Na(+) binding and enrich our knowledge of the transport mechanism of secondary transporters.
+
Multidrug and toxic compound extrusion (MATE) transporters mediate excretion of xenobiotics and toxic metabolites, thereby conferring multidrug resistance in bacterial pathogens and cancer cells. Structural information on the alternate conformational states and knowledge of the detailed mechanism of MATE transport are of great importance for drug development. However, the structures of MATE transporters are only known in V-shaped outward-facing conformations. Here, we present the crystal structure of a MATE transporter from Pyrococcus furiosus (PfMATE) in the long-sought-after inward-facing state, which was obtained after crystallization in the presence of native lipids. Transition from the outward-facing state to the inward-facing state involves rigid body movements of transmembrane helices (TMs) 2-6 and 8-12 to form an inverted V, facilitated by a loose binding of TM1 and TM7 to their respective bundles and their conformational flexibility. The inward-facing structure of PfMATE in combination with the outward-facing one supports an alternating access mechanism for the MATE family transporters.
-
Insights on Na(+) binding and conformational dynamics in multidrug and toxic compound extrusion transporter NorM.,Song J, Ji C, Zhang JZ Proteins. 2014 Feb;82(2):240-9. doi: 10.1002/prot.24368. Epub 2013 Sep 17. PMID:23873591<ref>PMID:23873591</ref>
+
Inward-facing conformation of a multidrug resistance MATE family transporter.,Zakrzewska S, Mehdipour AR, Malviya VN, Nonaka T, Koepke J, Muenke C, Hausner W, Hummer G, Safarian S, Michel H Proc Natl Acad Sci U S A. 2019 Jun 3. pii: 1904210116. doi:, 10.1073/pnas.1904210116. PMID:31160466<ref>PMID:31160466</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Revision as of 17:06, 14 August 2019

Reverse polarity of binding pocket suggests different function of a MOP superfamily transporter from Pyrococcus furiosus Vc1 (DSM3638)

PDB ID 4mlb

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools