Sandbox Reserved 1571

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
== Broader Implications ==
== Broader Implications ==
-
In a recent study done by Lizbeth Hedstrom, she mentioned how "pacemaker" enzymes, such as IMPDH are linked to neoplastic transformation and progression. Researchers discovered that if there were a way for these enzymes to become inhibited, then the growth of the tumors could be regulated and the rate of being metastasized could be controlled.
+
Dinucleoside polyphosphates have been found to participate in many different cellular processes such as DNA replication and repair, cell division, neurotransmission, apoptosis, vasoconstriction, and platelet aggregation. In a recent study done by Lizbeth Hedstrom, she mentioned how "pacemaker" enzymes, such as IMPDH are linked to neoplastic transformation and progression. Researchers discovered that if there were a way for these enzymes to become inhibited, then the growth of the tumors could be regulated and the rate of being metastasized could be controlled.
== Structural highlights and structure-function relationships ==
== Structural highlights and structure-function relationships ==
== Energy Transformation ==
== Energy Transformation ==
 +
As IMPDH has three nucleotide-binding sites, which aid in modulating and regulating catalytic activity, there is a large increase in affinity in this molecule. This more than likely comes from the simultaneous reduction of the entropic penalty of binding due to molecularity change.
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.

Revision as of 15:33, 26 November 2019

This Sandbox is Reserved from Aug 26 through Dec 12, 2019 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1556 through Sandbox Reserved 1575.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

('Structure')

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools