6s4g
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='6s4g' size='340' side='right'caption='[[6s4g]], [[Resolution|resolution]] 1.67Å' scene=''> | <StructureSection load='6s4g' size='340' side='right'caption='[[6s4g]], [[Resolution|resolution]] 1.67Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6s4g]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6S4G OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6S4G FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6s4g]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Chrvo Chrvo]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6S4G OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6S4G FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PMP:4-DEOXY-4-AMINOPYRIDOXAL-5-PHOSPHATE'>PMP</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene>, <scene name='pdbligand=PMP:4-DEOXY-4-AMINOPYRIDOXAL-5-PHOSPHATE'>PMP</scene></td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CV_2025 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=243365 CHRVO])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Adenosylmethionine--8-amino-7-oxononanoate_transaminase Adenosylmethionine--8-amino-7-oxononanoate transaminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.62 2.6.1.62] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Adenosylmethionine--8-amino-7-oxononanoate_transaminase Adenosylmethionine--8-amino-7-oxononanoate transaminase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.62 2.6.1.62] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6s4g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6s4g OCA], [http://pdbe.org/6s4g PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6s4g RCSB], [http://www.ebi.ac.uk/pdbsum/6s4g PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6s4g ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6s4g FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6s4g OCA], [http://pdbe.org/6s4g PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6s4g RCSB], [http://www.ebi.ac.uk/pdbsum/6s4g PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6s4g ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | One of the main factors hampering the implementation in industry of transaminase-based processes for the synthesis of enantiopure amines is their often low storage and operational stability. Our still limited understanding of the inactivation processes undermining the stability of wild-type transaminases represents an obstacle to improving their stability through enzyme engineering. In this paper we present a model describing the inactivation process of the well-characterized (S)-selective amine transaminase from Chromobacterium violaceum. The cornerstone of the model, supported by structural, computational, mutagenesis and biophysical data, is the central role of the catalytic lysine as a conformational switch. Upon breakage of the lysine-PLP Schiff base, the strain associated with the catalytically active lysine conformation is dissipated in a slow relaxation process capable of triggering the known structural rearrangements occurring in the holo-to-apo transition and ultimately promoting dimer dissociation. Due to the occurrence in the literature of similar PLP-dependent inactivation models valid for other non-transaminase enzymes belonging to the same fold-class, the role of the catalytic lysine as conformational switch might extend beyond the transaminase enzyme group and offer new insight to drive future non-trivial engineering strategies. | ||
+ | |||
+ | Insight into the dimer dissociation process of the Chromobacterium violaceum (S)-selective amine transaminase.,Ruggieri F, Campillo-Brocal JC, Chen S, Humble MS, Walse B, Logan DT, Berglund P Sci Rep. 2019 Nov 18;9(1):16946. doi: 10.1038/s41598-019-53177-3. PMID:31740704<ref>PMID:31740704</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6s4g" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Adenosylmethionine--8-amino-7-oxononanoate transaminase]] | [[Category: Adenosylmethionine--8-amino-7-oxononanoate transaminase]] | ||
+ | [[Category: Chrvo]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Berglund, P]] | [[Category: Berglund, P]] |
Revision as of 10:55, 4 December 2019
Crystal structure of the omega transaminase from Chromobacterium violaceum in complex with PMP
|