Sandbox Reserved 1563
From Proteopedia
(Difference between revisions)
| Line 35: | Line 35: | ||
== '''Energy Transformation''' == | == '''Energy Transformation''' == | ||
| - | There are three binding sites within the | + | There are three binding sites within the Bateman domain that regulate catalytic activity. These three sites bind dinucleoside polyphosphates, and the affinity for those binding sites increases as activity with IMPDH increases. Purine dinucleoside polyphosphates compete with purine mononucleotides within the Bateman domain. This requires the Bateman domain to make IMPDH more sensitive to inhibition<ref>PMID: 10390600</ref>. Covalent bonds are broken later in the reaction that allows the system enough energy to complete the process. |
</StructureSection> | </StructureSection> | ||
Revision as of 00:25, 8 December 2019
| This Sandbox is Reserved from Aug 26 through Dec 12, 2019 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1556 through Sandbox Reserved 1575. |
To get started:
More help: Help:Editing |
Inosine-5'-monophosphate dehydrogenase (IMPDH)
| |||||||||||
References
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
- ↑ Hedstrom L, Liechti G, Goldberg JB, Gollapalli DR. The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors. Curr Med Chem. 2011;18(13):1909-18. doi: 10.2174/092986711795590129. PMID:21517780 doi:http://dx.doi.org/10.2174/092986711795590129
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
- ↑ Hedstrom L. IMP dehydrogenase: mechanism of action and inhibition. Curr Med Chem. 1999 Jul;6(7):545-60. PMID:10390600
