Sandbox Reserved 1566
From Proteopedia
(Difference between revisions)
Line 34: | Line 34: | ||
The purpose of the blade motifs in the β-propeller is to bind calcium and sodium ions. Blade 1 coordinates two calcium ions via two intertwined calcium blade motifs, and the sodium ions are coordinated by individual calcium blade motifs in propeller blades 2-5 and 7.<ref>PMID:31439670</ref> There is a possibility that the ions found in the β-propeller play a role in structural stability, rather than a functional or enzymatic role. <ref>PMID:31439670</ref> The figure shows where the metal binding sites occur in the β-propeller. | The purpose of the blade motifs in the β-propeller is to bind calcium and sodium ions. Blade 1 coordinates two calcium ions via two intertwined calcium blade motifs, and the sodium ions are coordinated by individual calcium blade motifs in propeller blades 2-5 and 7.<ref>PMID:31439670</ref> There is a possibility that the ions found in the β-propeller play a role in structural stability, rather than a functional or enzymatic role. <ref>PMID:31439670</ref> The figure shows where the metal binding sites occur in the β-propeller. | ||
- | + | <scene name='82/823090/Asp_348/5'>Asp 348 Important Residue for Protein Function</scene> | |
The catalytic triad has not been clearly identified. Asp 348, which is found on the beta-prism of Bap1, plays a crucial role in binding to citrate and carbohydrates. Mutation of aspartic acid to alanine results in a loss of function for Bap1. Since Ala has a much smaller side chain than Asp, it becomes too many Å away to interact with citrate and carbohydrates. | The catalytic triad has not been clearly identified. Asp 348, which is found on the beta-prism of Bap1, plays a crucial role in binding to citrate and carbohydrates. Mutation of aspartic acid to alanine results in a loss of function for Bap1. Since Ala has a much smaller side chain than Asp, it becomes too many Å away to interact with citrate and carbohydrates. |
Revision as of 23:00, 8 December 2019
This Sandbox is Reserved from Aug 26 through Dec 12, 2019 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1556 through Sandbox Reserved 1575. |
To get started:
More help: Help:Editing |
Biofilm Associated Protein 1
|
References
- ↑ https://www.who.int/news-room/fact-sheets/detail/cholera
- ↑ Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 A crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem. 2019 Oct 4;294(40):14499-14511. doi: 10.1074/jbc.RA119.008335. Epub , 2019 Aug 22. PMID:31439670 doi:http://dx.doi.org/10.1074/jbc.RA119.008335
- ↑ https://www.slideshare.net/RajeshG5/bt631-6-structuralmotifs
- ↑ Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 A crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem. 2019 Oct 4;294(40):14499-14511. doi: 10.1074/jbc.RA119.008335. Epub , 2019 Aug 22. PMID:31439670 doi:http://dx.doi.org/10.1074/jbc.RA119.008335
- ↑ Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 A crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem. 2019 Oct 4;294(40):14499-14511. doi: 10.1074/jbc.RA119.008335. Epub , 2019 Aug 22. PMID:31439670 doi:http://dx.doi.org/10.1074/jbc.RA119.008335
- ↑ Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 A crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem. 2019 Oct 4;294(40):14499-14511. doi: 10.1074/jbc.RA119.008335. Epub , 2019 Aug 22. PMID:31439670 doi:http://dx.doi.org/10.1074/jbc.RA119.008335
- ↑ Kaus K, Biester A, Chupp E, Lu J, Visudharomn C, Olson R. The 1.9 A crystal structure of the extracellular matrix protein Bap1 from Vibrio cholerae provides insights into bacterial biofilm adhesion. J Biol Chem. 2019 Oct 4;294(40):14499-14511. doi: 10.1074/jbc.RA119.008335. Epub , 2019 Aug 22. PMID:31439670 doi:http://dx.doi.org/10.1074/jbc.RA119.008335
- ↑ https://biologydictionary.net/biofilm/