Sandbox Reserved 1563
From Proteopedia
(Difference between revisions)
Line 27: | Line 27: | ||
<scene name='82/823087/Impdh_triad/6'>IMPDH triad</scene>. The IMPDH triad includes Arg (320), Asn (306), and Asp (272). This is represented by the solid black structures in the image. This triad is important as it makes cystine more reactive, which in turn induces binding. | <scene name='82/823087/Impdh_triad/6'>IMPDH triad</scene>. The IMPDH triad includes Arg (320), Asn (306), and Asp (272). This is represented by the solid black structures in the image. This triad is important as it makes cystine more reactive, which in turn induces binding. | ||
- | <scene name='82/823087/Impdh_triad_active_binding/ | + | <scene name='82/823087/Impdh_triad_active_binding/4'>IMPDH active binding site</scene>. The active binding cite is where the binding takes place after the catalytic triad makes cystine more reactive and binding is induced. In the image the cystines are in white. This is where binding would occur. |
<scene name='82/823087/Impdh_charge/2'>IMPDH charge</scene>. IMPDH has no significant charge since it is found in physiological environments. Positively and negatively charged amino acids play a part in intermediate covalent binding steps<ref>PMID: 31416831</ref>. | <scene name='82/823087/Impdh_charge/2'>IMPDH charge</scene>. IMPDH has no significant charge since it is found in physiological environments. Positively and negatively charged amino acids play a part in intermediate covalent binding steps<ref>PMID: 31416831</ref>. |
Revision as of 03:28, 9 December 2019
This Sandbox is Reserved from Aug 26 through Dec 12, 2019 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1556 through Sandbox Reserved 1575. |
To get started:
More help: Help:Editing |
Inosine-5'-monophosphate dehydrogenase (IMPDH)
|
References
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
- ↑ Hedstrom L, Liechti G, Goldberg JB, Gollapalli DR. The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors. Curr Med Chem. 2011;18(13):1909-18. doi: 10.2174/092986711795590129. PMID:21517780 doi:http://dx.doi.org/10.2174/092986711795590129
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
- ↑ Hedstrom L. IMP dehydrogenase: mechanism of action and inhibition. Curr Med Chem. 1999 Jul;6(7):545-60. PMID:10390600