| Structural highlights
Disease
[TF2H5_HUMAN] Defects in GTF2H5 are a cause of trichothiodystrophy photosensitive (TTDP) [MIM:601675]. TTDP is an autosomal recessive disease characterized by sulfur-deficient brittle hair and nails, ichthyosis, mental retardation, impaired sexual development, abnormal facies and cutaneous photosensitivity correlated with a nucleotide excision repair (NER) defect. Neonates with trichothiodystrophy and ichthyosis are usually born with a collodion membrane. The severity of the ichthyosis after the membrane is shed is variable, ranging from a mild to severe lamellar ichthyotic phenotype. There are no reports of skin cancer associated with TTDP. [ERCC2_HUMAN] Trichothiodystrophy;COFS syndrome;Xeroderma pigmentosum complementation group D. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry.
Function
[TF2H5_HUMAN] Component of the TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Necessary for the stability of the TFIIH complex and for the presence of normal levels of TFIIH in the cell.[1] [ERCC2_HUMAN] ATP-dependent 5'-3' DNA helicase, component of the core-TFIIH basal transcription factor. Involved in nucleotide excision repair (NER) of DNA by opening DNA around the damage, and in RNA transcription by RNA polymerase II by anchoring the CDK-activating kinase (CAK) complex, composed of CDK7, cyclin H and MAT1, to the core-TFIIH complex. Involved in the regulation of vitamin-D receptor activity. As part of the mitotic spindle-associated MMXD complex it plays a role in chromosome segregation. Might have a role in aging process and could play a causative role in the generation of skin cancers.[2] [3] [4] [5] [TF2H2_HUMAN] Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. The N-terminus interacts with and regulates XPD whereas an intact C-terminus is required for a successful escape of RNAP II form the promoter. [TF2H3_HUMAN] Component of the core-TFIIH basal transcription factor involved in nucleotide excision repair (NER) of DNA and, when complexed to CAK, in RNA transcription by RNA polymerase II. Anchors XPB.
Publication Abstract from PubMed
Human transcription factor IIH (TFIIH) is part of the general transcriptional machinery required by RNA polymerase II for the initiation of eukaryotic gene transcription. Composed of ten subunits that add up to a molecular mass of about 500 kDa, TFIIH is also essential for nucleotide excision repair. The seven-subunit TFIIH core complex formed by XPB, XPD, p62, p52, p44, p34, and p8 is competent for DNA repair, while the CDK-activating kinase subcomplex, which includes the kinase activity of CDK7 as well as the cyclin H and MAT1 subunits, is additionally required for transcription initiation. Mutations in the TFIIH subunits XPB, XPD, and p8 lead to severe premature ageing and cancer propensity in the genetic diseases xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy, highlighting the importance of TFIIH for cellular physiology. Here we present the cryo-electron microscopy structure of human TFIIH at 4.4 A resolution. The structure reveals the molecular architecture of the TFIIH core complex, the detailed structures of its constituent XPB and XPD ATPases, and how the core and kinase subcomplexes of TFIIH are connected. Additionally, our structure provides insight into the conformational dynamics of TFIIH and the regulation of its activity.
The cryo-electron microscopy structure of human transcription factor IIH.,Greber BJ, Nguyen THD, Fang J, Afonine PV, Adams PD, Nogales E Nature. 2017 Sep 21;549(7672):414-417. doi: 10.1038/nature23903. Epub 2017 Sep, 13. PMID:28902838[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N, Jaspers NG, Raams A, Argentini M, van der Spek PJ, Botta E, Stefanini M, Egly JM, Aebersold R, Hoeijmakers JH, Vermeulen W. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet. 2004 Jul;36(7):714-9. Epub 2004 Jun 27. PMID:15220921 doi:10.1038/ng1387
- ↑ Tirode F, Busso D, Coin F, Egly JM. Reconstitution of the transcription factor TFIIH: assignment of functions for the three enzymatic subunits, XPB, XPD, and cdk7. Mol Cell. 1999 Jan;3(1):87-95. PMID:10024882
- ↑ Drane P, Compe E, Catez P, Chymkowitch P, Egly JM. Selective regulation of vitamin D receptor-responsive genes by TFIIH. Mol Cell. 2004 Oct 22;16(2):187-97. PMID:15494306 doi:http://dx.doi.org/10.1016/j.molcel.2004.10.007
- ↑ Ito S, Tan LJ, Andoh D, Narita T, Seki M, Hirano Y, Narita K, Kuraoka I, Hiraoka Y, Tanaka K. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol Cell. 2010 Aug 27;39(4):632-40. doi: 10.1016/j.molcel.2010.07.029. PMID:20797633 doi:http://dx.doi.org/10.1016/j.molcel.2010.07.029
- ↑ Sung P, Bailly V, Weber C, Thompson LH, Prakash L, Prakash S. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature. 1993 Oct 28;365(6449):852-5. PMID:8413672 doi:http://dx.doi.org/10.1038/365852a0
- ↑ Greber BJ, Nguyen THD, Fang J, Afonine PV, Adams PD, Nogales E. The cryo-electron microscopy structure of human transcription factor IIH. Nature. 2017 Sep 21;549(7672):414-417. doi: 10.1038/nature23903. Epub 2017 Sep, 13. PMID:28902838 doi:http://dx.doi.org/10.1038/nature23903
|