6k5r

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='6k5r' size='340' side='right'caption='[[6k5r]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
<StructureSection load='6k5r' size='340' side='right'caption='[[6k5r]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6k5r]] is a 2 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6K5R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6K5R FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6k5r]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6K5R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6K5R FirstGlance]. <br>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SEP:PHOSPHOSERINE'>SEP</scene></td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SUMO3, SMT3A, SMT3H1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6k5r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6k5r OCA], [http://pdbe.org/6k5r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6k5r RCSB], [http://www.ebi.ac.uk/pdbsum/6k5r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6k5r ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6k5r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6k5r OCA], [http://pdbe.org/6k5r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6k5r RCSB], [http://www.ebi.ac.uk/pdbsum/6k5r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6k5r ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/SUMO3_HUMAN SUMO3_HUMAN]] Ubiquitin-like protein which can be covalently attached to target lysines either as a monomer or as a lysine-linked polymer. Does not seem to be involved in protein degradation and may function as an antagonist of ubiquitin in the degradation process. Plays a role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Covalent attachment to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4.<ref>PMID:11451954</ref> <ref>PMID:18538659</ref> [[http://www.uniprot.org/uniprot/VIE2_HCMVA VIE2_HCMVA]] Stimulates viral early and late gene expression and thus play a crucial role in the regulation of productive infection. In addition, activates quiescent cells to reenter the cell cycle and upregulates several E2F-responsive genes, which are responsible for pushing the cell into S phase. In S-phase, inhibits cellular DNA synthesis and blocks further cell cycle progression.<ref>PMID:10516036</ref> <ref>PMID:19812159</ref>
[[http://www.uniprot.org/uniprot/SUMO3_HUMAN SUMO3_HUMAN]] Ubiquitin-like protein which can be covalently attached to target lysines either as a monomer or as a lysine-linked polymer. Does not seem to be involved in protein degradation and may function as an antagonist of ubiquitin in the degradation process. Plays a role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Covalent attachment to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by an E3 ligase such as PIAS1-4, RANBP2 or CBX4.<ref>PMID:11451954</ref> <ref>PMID:18538659</ref> [[http://www.uniprot.org/uniprot/VIE2_HCMVA VIE2_HCMVA]] Stimulates viral early and late gene expression and thus play a crucial role in the regulation of productive infection. In addition, activates quiescent cells to reenter the cell cycle and upregulates several E2F-responsive genes, which are responsible for pushing the cell into S phase. In S-phase, inhibits cellular DNA synthesis and blocks further cell cycle progression.<ref>PMID:10516036</ref> <ref>PMID:19812159</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Many viral factors manipulate the host post-translational modification (PTM) machinery for efficient viral replication. In particular, phosphorylation and SUMOylation can distinctly regulate the activity of the human cytomegalovirus (HCMV) transactivator immediate early 2 (IE2). However, the molecular mechanism of this process is unknown. Using various structural, biochemical, and cell-based approaches, here we uncovered that IE2 exploits a cross-talk between phosphorylation and SUMOylation. A scan for small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) revealed two SIMs in IE2, and a real-time SUMOylation assay indicated that the N-terminal SIM (IE2-SIM1) enhances IE2 SUMOylation up to 4-fold. Kinetic analysis and structural studies disclosed that IE2 is a SUMO cis-E3 ligase. We also found that two putative casein kinase 2 (CK2) sites adjacent to IE2-SIM1 are phosphorylated in vitro and in cells. The phosphorylation drastically increased IE2-SUMO affinity, IE2 SUMOylation, and cis-E3 activity of IE2. Additional salt bridges between the phosphoserines and SUMO accounted for the increased IE2-SUMO affinity. Phosphorylation also enhanced the SUMO-dependent transactivation activity and auto-repression activity of IE2. Together, our findings highlight a novel mechanism whereby SUMOylation and phosphorylation of the viral cis-E3 ligase and transactivator protein IE2 work in tandem to enable transcriptional regulation of viral gene.
 +
 +
Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2.,Tripathi V, Chatterjee KS, Das R J Biol Chem. 2019 Oct 4;294(40):14546-14561. doi: 10.1074/jbc.RA119.009601. Epub , 2019 Aug 1. PMID:31371453<ref>PMID:31371453</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6k5r" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: Chatterjee, K S]]
[[Category: Chatterjee, K S]]

Revision as of 12:57, 25 December 2019

Complex of SUMO2 with Phosphorylated viral SIM IE2

PDB ID 6k5r

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools